

Dolph Microwave Co., Ltd.

Add.: FengHuiNan Road NO.34, High-Tech Zone Xi'an, CHINA

Phone: +86 (29) 8881 0979 Fax: +86 (29) 8881 0979

Email: sales@dolphmicrowave.com **Web:** www.dolphmicrowave.com

PRODUCT BROCHURE

High quality RF and Microwave Connectors & Cable Assemblies.

Dolph Microwave Co., Ltd.

COMPANY PROFILE

WHO WE ARE?

Dolph Microwave was founded in 2001 with predecessor from previous state owned 806 Factory. Based on design and manufacturing experience over 20 years, reliable microwave components and satcom antenna help us win good reputation in satellite communication and space exploration fields.

Product line(Featured product) includes coaxial adapter, WG termination, attenuator, WG bend/straight/twist, pressure window, standard gain horn, WG coupler as well as earth station, drive away and quick deploy antenna etc. Product "Quality Manual" and "Quality Procedure" is compliant with ISO9001-2015.

Knowing the specific requirements of each customer so as to provide satisfactory products and systems. We look forward to cooperating with you in microwave and satellite communication fields.

Dolph Microwave has leading R&D ability of microwave components and antenna feeds. Required specification is realized based on wide skills in CAD/solid modeling/RF simulation/prototype design etc. Completed test devices help to reduce time cycle from design to R&D, making the whole process more efficient and guaranteed. In addition, we keep closed cooperation with well partners in this industry to offer competitive products for customers.

▲ MICROWAVE PROJECT DESIGN

Advanced electromagnetic design tools is used to design Dolph products, which include:

- 01 CST studio for feed, OMT, filter, phase shifter.
- 02 The latest CUDA GPU technology.
- 03 GRASP & POS from TICRA for designing & optimizing antenna optical parts such as multiple beams, dual optical parts shaped reflector.
- 0.4 QuickWave-V2D for designing axial symmetry equipment such as feed, filter, standard gain antenna. Our testing facility takes key role in Dolph Microwave's continuous development, including the advanced 100GHz compact testing system.

▲ MACHINE DESIGN & PRODUCTION

Our experienced mechanical engineers assure product mechanical integrity and working life, including Solidworks Flow Simulation (CFD), ANSYS and Solidworks finite element software. Wind tunnel test is by external wind tunnel to confirm computer simulation. Advanced FARO and LEICA laser scanner is used for RMS test, key size of reflecting mirror and other parts. Lab built with a salt-fog chamber to test if the paint or pre-painted metal parts meet ASTM B117. And we use environmental test chamber to test influence for microwave components structure and feed element from the extreme cold or hot environment.

SPACE QUALIFIED COMPONENTS

Dolph Microwave is one of leading manufatcurer on space qualified waveguide accessories, kits and components for space flight industry. Namely TVAC application. It's our honor to offered components to China Satellite Network Group, ShenZhou launch, Thales TVAC lab test and Airbus TVAC lab test and others.

Superior manufacturing techniques and advanced materials is our persue, which allows us to surpass our competition in manufacturing technology, compact structure and light weight for special required space qualified components.

Components of Space Qualified Components can be manufactured varities both standard and customized including waveguide to coaxial adpater, twist, straight, bend, transition and other customized composite bend waveguide etc. Latest space qualified components includes water cooled components/lightweight cast mitered waveguides, silver plated waveguides. Featured with low loss, mm wave, thin wall, composite multi bend in 1pcs runs to save weight, space and much more.

These components also can be used in many scientific satellites and space systems, including earth station, Space flight and high temperature, vavuum, test chamber. With features below.

- . Up / Down Link Components
- Wide Range of Waveguide & Coax

 - . Commercial / Military / Scientific
 - Lightweight
 - · Standard or Thin Wall
 - · High Performance and High Temperature
 - · Vacuum Ready
 - Performance under Acceleration Loads- Long Life and Durability
 - Meets or exceeds Mil-Specs
 - · No Outgassing Materials and Coatings
 - · Water Cooled Components
 - High Performance

WHY CHOOSE US

- Ingress Protection. IP65/IPX6
- RoHS Directive (EU) 2015/863
- Salt Fog Test. GJB150.11A-2009
- UV Ray Aging Test. ISO 4892-2-2013, ISO 37-2017, ISO 7619-1-2010
- Environmental Engineering Considerations and Laboratory Tests.

MIL-STD-810H-516.8

MIL-STD-810H-514.8

MIL-STD-810H-507.6

• The Satcom Antenna Meets ITU-RS-580, FCC and Intelsat (F3, E3) and Eutelsat (L, S1)

High quality RF Microwave Connectors Cable Assemblies.

RF CONNECTOR FREQUENCY RANGE

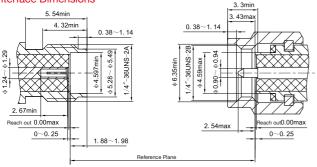
Туре						Fr	equency	/ Range					
.,,,,	2GHz	4GHz	6GHz	7.5GHz	11GHz	12GHz	18GHz	27GHz	30GHz	40GHz	50GHz	65GHz	110GHz
1.0mm													110GHz
1.85mm												65GHz	
SSMP												65GHz	
2.4mm											50GHz		
2.92mm										40GHz			
SMP										40GHz			
3.5mm									30GHz				
SSMA									30GHz				
SMA								27GHz					
ISMA								27GHz					
TNC					11GHz								
TNCA							18GHz						
BMA							18GHz						
TYPE N							18GHz						
4.3-10						12GHz							
7/16				7.5GHz									
MCX			6GHz										
MMCX			6GHz										
BNC		4GHz											
SMB		4GHz											
SSMB	2GHz												

Coaxial Connector

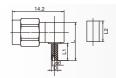
High quality RF and Microwave Connectors & Cable Assemblies.

SMA

Type SMA is one kind of RF coaxial connectors which is small-sized thread coupling, and its characteristic impendence is $50~\Omega$. This type of connectors has the excellent performance of high reliability, high mechanical strength, high durability and optimum electrical properties, which are widely used in the connection of RF circuit of mobile communication equipment and electrical instruments. Toe interface mating dimensions and technical characteristics are according to the standard of MIL-C-39012, IEC169-15 and CECC22110.

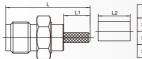

Key Performance

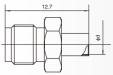
Character	istic Impedace	50 Ω	Frequency Range			DC∼18GHz
Insulation resistance		≥5000M Ω	Dieletric Withstanding Voltage			1000V
Contact R	esistance	Center Condu	ctor ≤	3.0mΩ, Oute	er Conducto	or≤2.0mΩ
VSWR	Straight ≤1. 05+0. 012F (Ghz			RF Insertion	Straight	\leq 0.05 $\sqrt{F(GHz)}$ dB
		1.06+0.015F (Ghz)		loss	Right Angle	e≤0.08√F(GHz) dB
Durability	50) times				


Materials & Plating

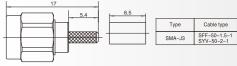
	Central Contacts		Brass, Gold Plating Beryllium, Gold Plating	,	Brass, Gold Plating Stainless Steel, Passivated	
ı	Insulate	ors	PTFE	Gaskets	Sillion Rubber	

Interface Dimensions

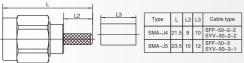


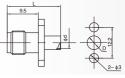

Туре	L	L1	L2	Cable type
SMA-JW2	13	5.7	6.5	SFF-50-1 SYV-50-1
SMA-JW3	13	5.7	6.5	SFF-50-1.5-1 SYV-50-2-1
SMA-JW4	16	8	10	SFF-50-2-2 SYV-50-2-2
SMA-JW5	18	10	12	SFF-50-3-1 SYV-50-3-1

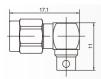
-	Type	L	L1	L2	Cable type
1	SMA-K3	17	5.6	6.5	SFF-50-1.5-1 SYV-50-2-1
J	SMA-K4	20	8	10	SFF-50-2-2 SYV-50-2-2
	SMA-K5	22	10	2	SFF-50-3-1 SYV-50-3-1



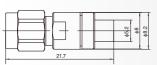
Type	d	Cable type
SMA-KB2	ф2.2	SFT-50-2-1
SMA-KB3	ф 3.6	SFT-50-2-1

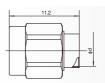


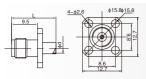


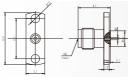


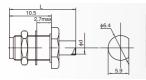

Type	L	d	Cable type
SMA-KFB2	12.7	ф2.2	SFT-50-2-1
SMA-KFB3	14.2	ф3.6	SFT-50-3-1


Туре	Cable type
SMA-JWB2	SFT-50-2-1


Type	d	Cable type
SMA-JBC2C	ф2.2	SFT-50-2-1
SMA-JBC3C	ф 3.6	SFT-50-3-1


е
12


d	Cable type
ф2.2	SFT-50-2-1
ф3.6	SFT-50-3-1
	ф 2.2


Туре	L	d	Cable type
SMA-KFB1	12.7	ф1.2	SFT-50-1
SMA-KFB2a	12.7	ф2.2	SFT-50-2-1
SMA-KFB3a	14.2	ф3.6	SFT-50-3-1

Туре	D
SMA-KFD21212	0.012inch / 0.30mm
SMA-KFD21215	0.015inch / 0.38mm
SMA-KFD21218	0.018inch / 0.46mm
SMA-KFD21220	0.020inch / 0.51mm

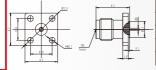
Туре	L	d	Cable type
SMA-KYB2	19	ф2.2	SFT-50-2-1
SMA-KYB3	19	ф2.2	SFT-50-3-1
SMA-KYB3A	15.9	ф3.6	SFT-50-3-1

Toget	35 SS
-------	---

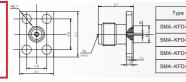
	Туре	D
	SMA-KFD21012	0.012inch / 0.30mm
	SMA-KFD21015	0.015inch / 0.38mm
L	SMA-KFD21018	0.018inch / 0.46mm
	SMA-KFD21020	0.020inch / 0.51mm

Туре	D
SMA-KFD2912	0.012inch / 0.30mm
SMA-KFD2915	0.015inch / 0.38mm
SMA-KFD2918	0.018inch / 0.46mm
SMA-KFD2920	0.020inch / 0.51mm

Type	D
SMA-KFD2812	0.012inch / 0.30mm
SMA-KFD2815	0.015inch / 0.38mm
SMA-KFD2818	0.018inch / 0.46mm
SMA-KFD2820	0.020inch / 0.51mm



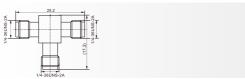
Туре	D
SMA-KFD4912	0.012inch / 0.30mm
SMA-KFD4915	0.015inch / 0.38mm
SMA-KFD4918	0.018inch / 0.46mm
SMA-KFD4920	0.020inch / 0.51mm

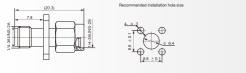


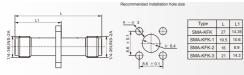
Type	D
SMA-KFD4612	0.012inch / 0.30mm
SMA-KFD4615	0.015inch / 0.38mm
SMA-KFD4618	0.018inch / 0.46mm
SMA-KFD4620	0.020inch / 0.51mm

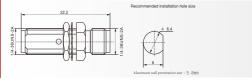
		1/4-36UNS-2A
ı	SMA-JWK	

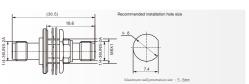
D	
0.012inch / 0.30mm	- Thurs
0.015inch / 0.38mm	(Company of the
0.018inch / 0.46mm	
0.020inch / 0.51mm	SMA-KK
	0.012inch / 0.30mm 0.015inch / 0.38mm 0.018inch / 0.46mm

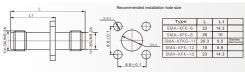


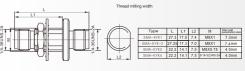


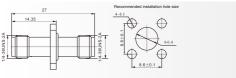




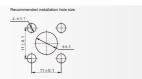


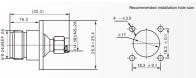


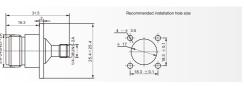


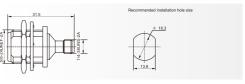


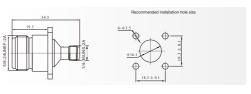


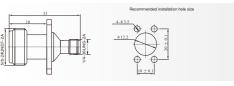


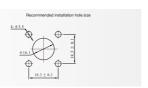


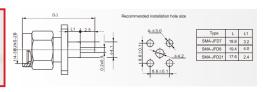


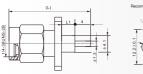


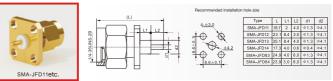


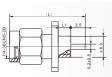


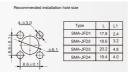




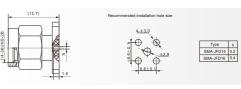


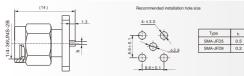


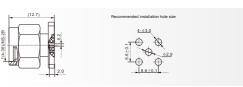


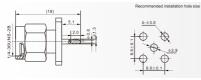


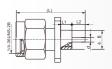
Recommended installation hole	size		
X			
7 2-43.0	Type	L	L1
	SMA-JFD	25.4	8.6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SMA-JFD23	18.7	2.0
Ψ			

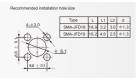


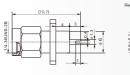


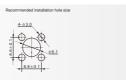


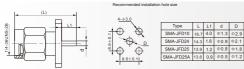


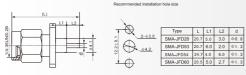


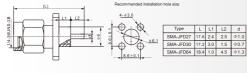


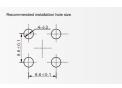


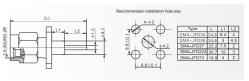


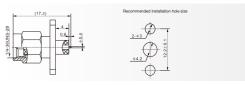


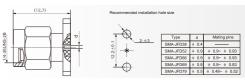


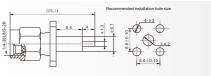


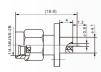


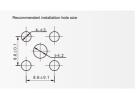


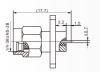


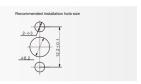


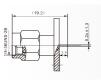


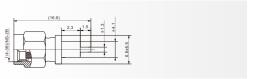


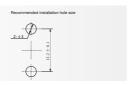


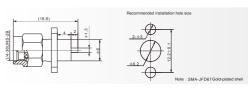


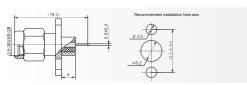


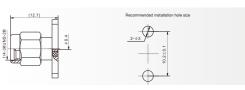


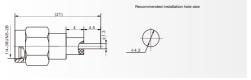


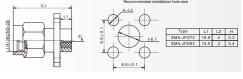


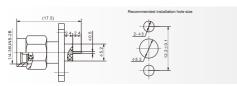


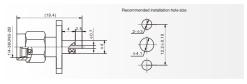


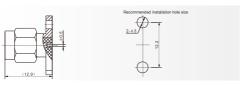


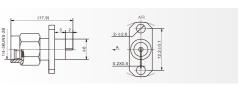


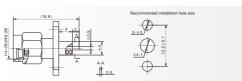


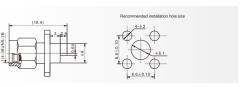


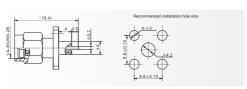


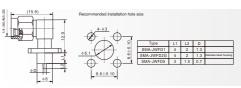


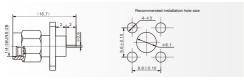


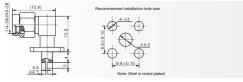


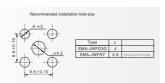


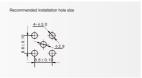


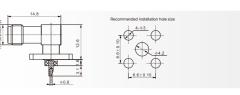


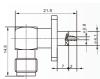


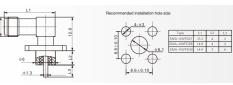


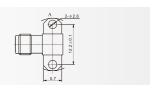




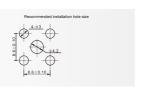


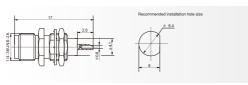


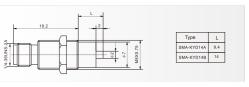


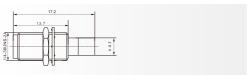


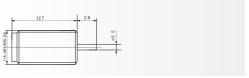
Type	L1	L2	L3	d
SMA-KFWD2	14.8	4	2	0 1.3
SMA-KWFD11	14.8	2.4	5	÷ 1.3
SMA-KWFD21	23.3	4	2	0 1.3

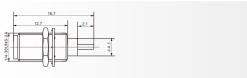


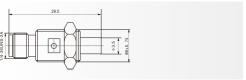


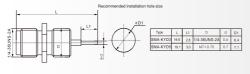


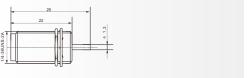


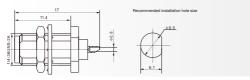


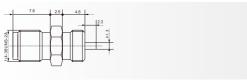


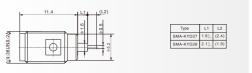


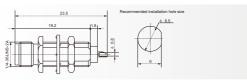




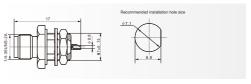


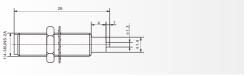


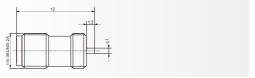


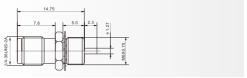


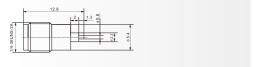




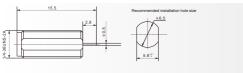


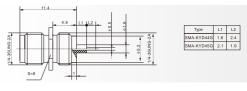


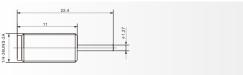


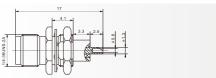


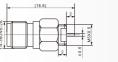




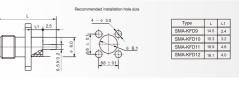

SMA-KYD43

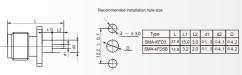

SMA-KYD42 13 4 2.6

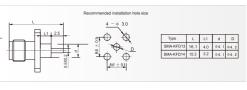


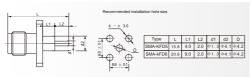


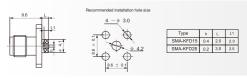


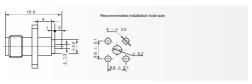


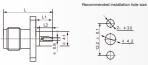


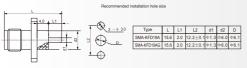


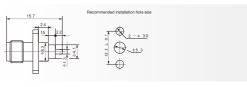


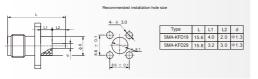


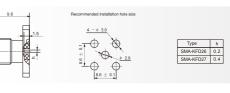


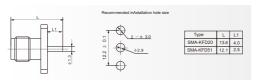


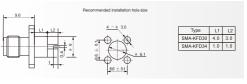

www.dolphmicrowave.com

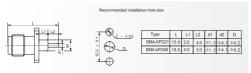

×	
2- +30	
2 0 - 3 4 2	
Ψ	

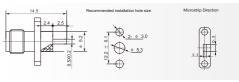


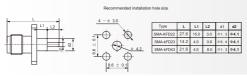


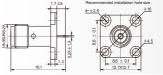


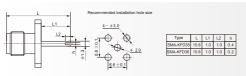




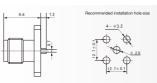


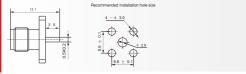


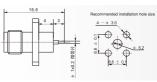


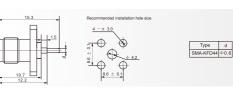


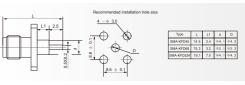
www.dolphmicrowave.com



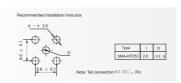


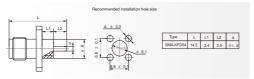


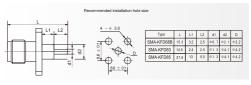


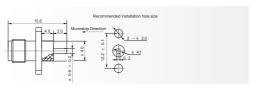


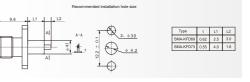


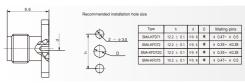


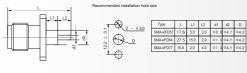


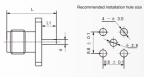


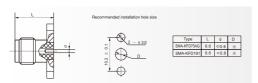


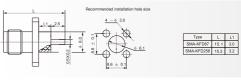




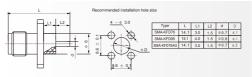


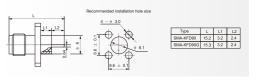


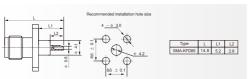


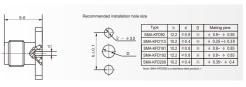


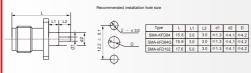
Type	L	L1	d
SMA-KFD78	11.1	1.5	Ф0.7
SMA-KFD88	14.1	1.5	Ф0.5

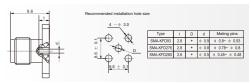


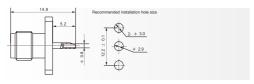


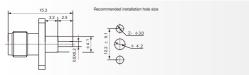


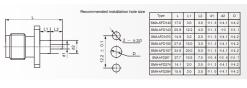


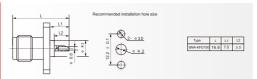


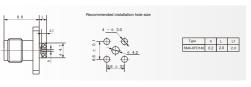


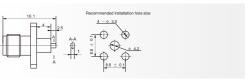


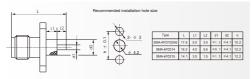


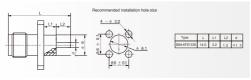


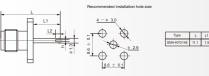


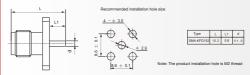


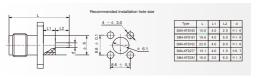


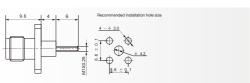


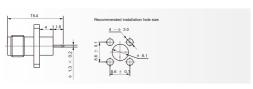




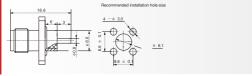


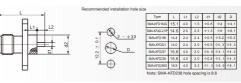




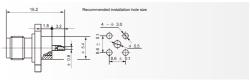


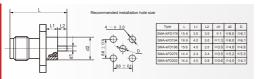
Recommended installation hole size

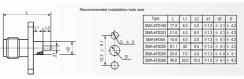


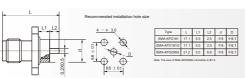


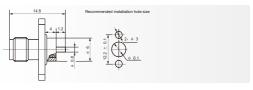


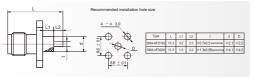


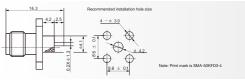


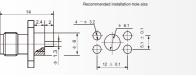


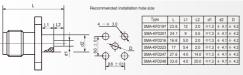


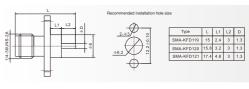


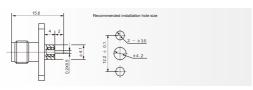


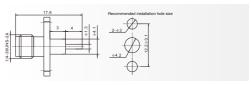


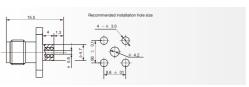


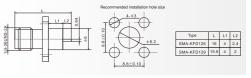


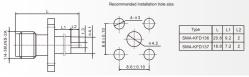


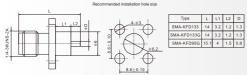


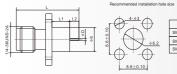


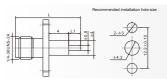


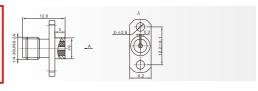


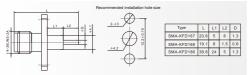




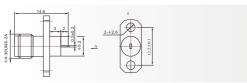


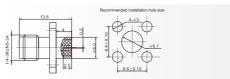


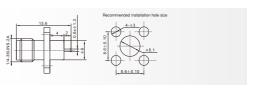

Type	L	L1	L2	D
SMA-KFD151	16.9	4.8	2.5	0.5
SMA-KFD174	19.3	6.7	3	0.6
SMA-KFD176	18	3.2	5.2	1.3

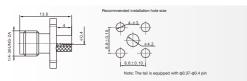


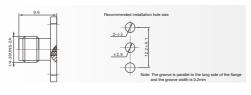
Type L L1 SMA-KFD169 14.6 1 SMA-KFD170 16.1 2.5

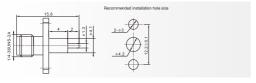


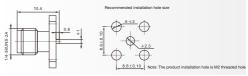


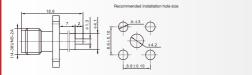

SMA-KFD214

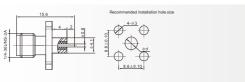


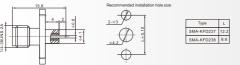


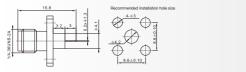


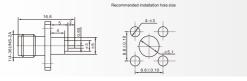


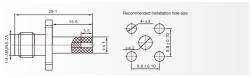


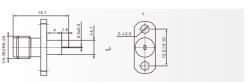


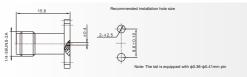


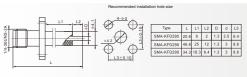


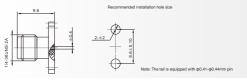


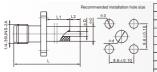


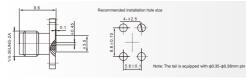


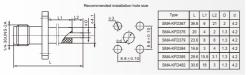




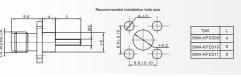


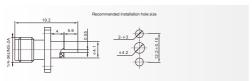


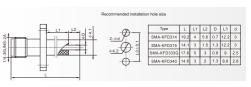


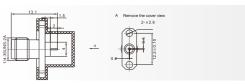


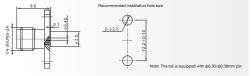
Type	L	L1	L2	D	đ
SMA-KFD300	30.2	14.4	6.2	1.3	4.1
SMA-KFD306	55.6	34	12	1.3	4.1
SMA-KFD316	27.6	0	18	1.3	2.9
SMA-KFD338	15.8	3	3	1	4.1
SMA-KFD350	19.6	9	1	1.1	3.8
SMA-KFD353	30	6.5	5.5	1.3	4.1
SMA-KFD356	24.6	12	3	1.3	4.1
SMA-KFD360	16.2	3.8	2.8	0.8	4.1

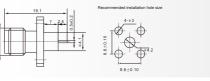


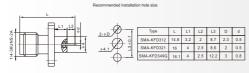


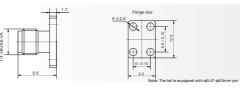


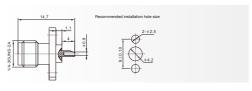


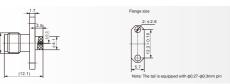


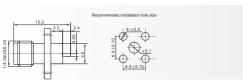


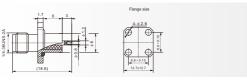


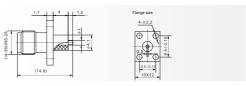


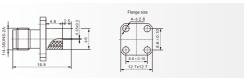


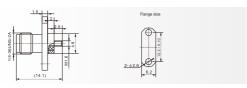


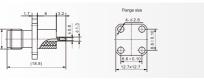


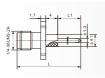




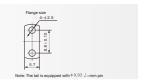




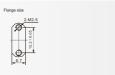


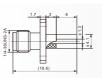


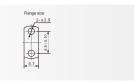


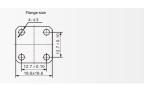


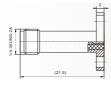
Type	L	L1
SMK-KFD410	18.6	5
SMK-KFD413	53.6	40

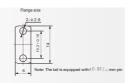


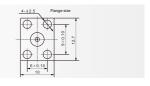


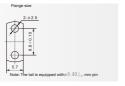


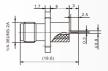


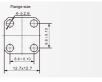


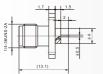


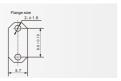


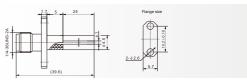


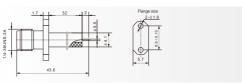


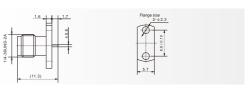


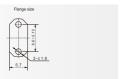


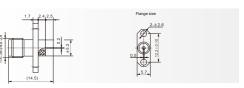


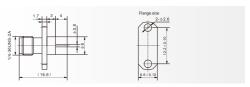


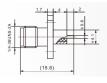


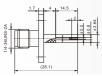


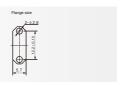


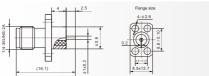


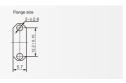


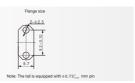


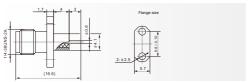


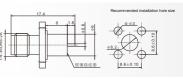


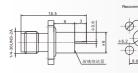


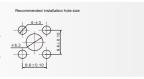


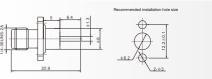


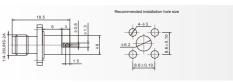


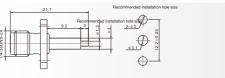


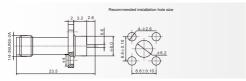


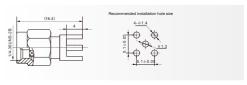


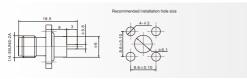


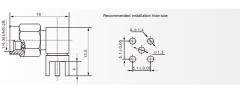


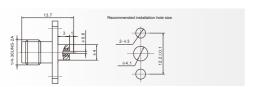


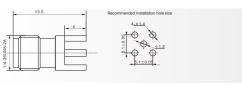


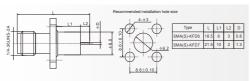


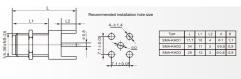


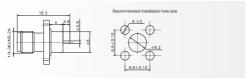


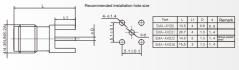


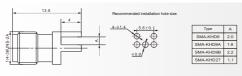


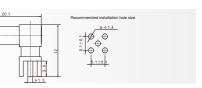


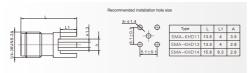


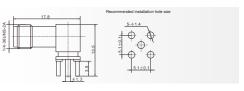


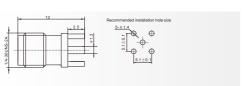


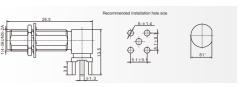


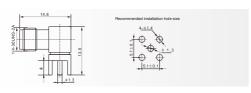


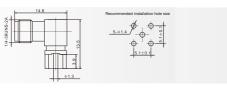




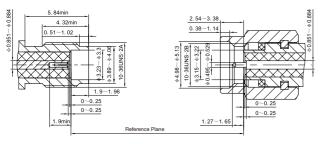








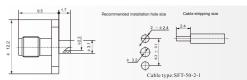
SSMA

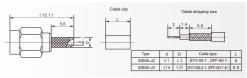

Type SSMA is one kind of microminiature RF coaxial connectors with screw coupling mechanism, which is the smaller version of SMA conectors, they have the excellent performance of light weight, small size, rugged construction, ide frequency range and high reliability, which are widely used in RF and microwave communication system. The interface mating dimensions and technical characteristics are according to the standard of CECC22140 and IEC169–18.

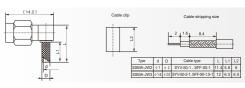
Key Performance

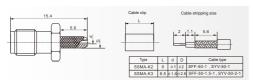
Characteri	50Ω		Durability		500 times		
Insulation resistance		≥5000M Ω	Dieletric Withstanding Voltage		750 V		
Contact Resistance Center Conductor			cto	or ≤4.0πΩ, Outer Conductor ≤2.5πΩ			≤2.5mΩ
VSWR	Straight ≤1, 05+0, 012F (Ghz)			RF Insertion loss	Straight ≤0.05√F(GHz) dB		
	Right Angle≤1, 06+0, 015F (Ghz)					t Angle	≤0.08√F(GHz) dB
Frequency	Straight: DC~30GHz		_				
Range	Right Angle: DC~18GHz						

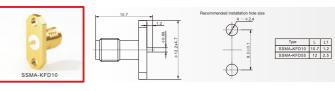
Materials & Plating

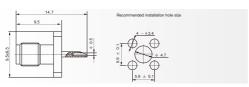

Central	Female Center	Brass, Gold Plating	Body and other	Brass, Gold Plating	
Contacts	Contacts	Beryllium, Gold Plating	Metal Parts	Stainless Steel, Passivated	
Insulators		PTFE	Gaskets	Sillion Rubber	

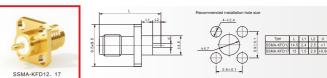




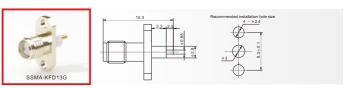


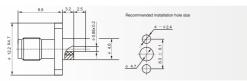


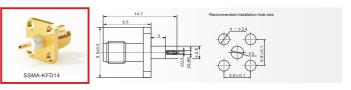


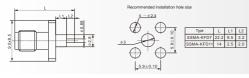


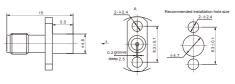


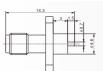


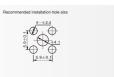


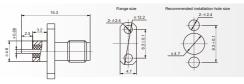


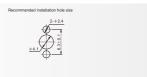


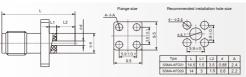


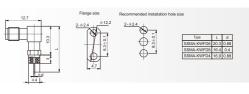


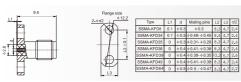




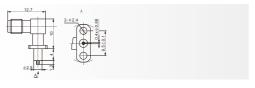


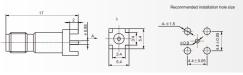


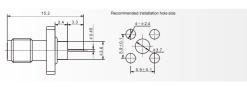


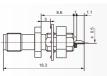


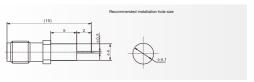


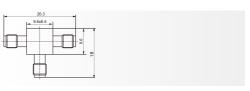


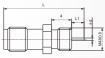


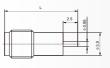


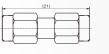


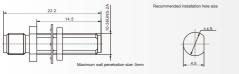


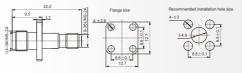




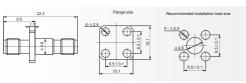


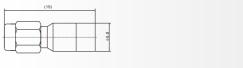


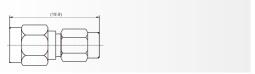




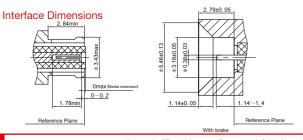


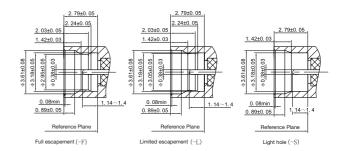






SMP

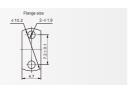

Type SMP is one kind of miniature RF coaxial connectors with snap-on self-latching mechanism, They are developed for modular interconnection system with denser packing requirements. The characteristic of this type is easy to connect/disconnect, light weight, vibration-proof, high frequency and high performance.

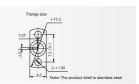

Key Performance

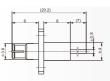
Characteristic	Impedace	50 Ω	Frequency Range	DC∼40GHz	
Insulation re	sistance	≥5000M Ω	Dieletric Withstanding Voltage	500V	
Contact Resistance Center Conductor ≤6.			0m Ω, Outer Conductor ≤2.0mΩ		
RF Insertion loss ≤0. 07√F(GHz) dB					
	Frequency	DC~18GHz	18∼26.5GHz	26.5∼40GHz	
VSWR	Straight	1. 25	1.3	1.5	
	Right Angle	1.3	1. 4		
Durability		1000times(-S)	500 times (-L)	100 times (-F)	
Meshing force		9N max(-S)	45N max(-L)	68N max (-F)	
Pull-off For	се	2.2N min(-S)	9N min(-L)	22N min(-F)	
Axial Misalio	gnment	\pm 0.25mm	Radial Misalignment	0∼0.25mm	

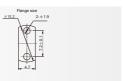
Materials & Plating

	Male Center	Tin phosphor bronze, gold plated		Brass, gold or nickel plated
Central Contacts	Contacts	Kovar, gold plated	Housing and other metal parts	Stainless Steel, Passivated
	Female Center Contacts	Beryllium bronze, gold plated		Kovar Alloy, Gold-plated
Insulation medium		PTFE or glass, etc.	Elastic parts	Beryllium, Gold Plating

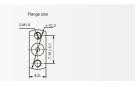


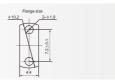


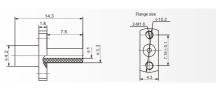


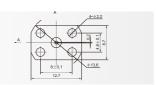


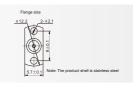


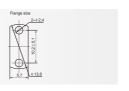


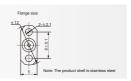


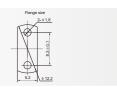


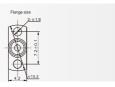


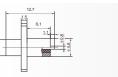


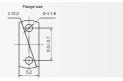


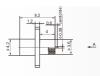


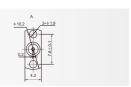




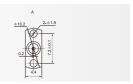


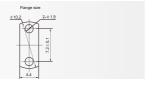


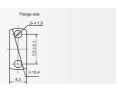


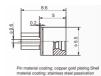


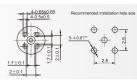


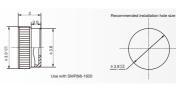


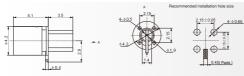


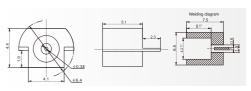


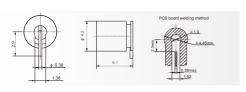


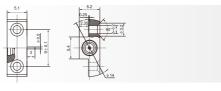


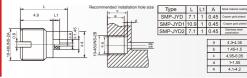


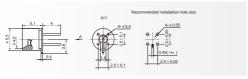


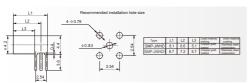


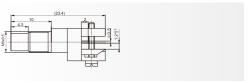


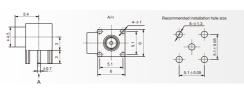


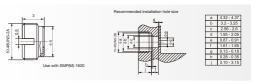


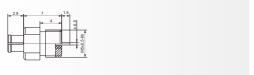


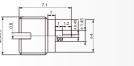


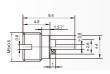


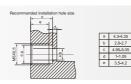


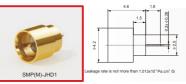


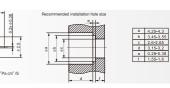


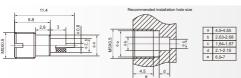


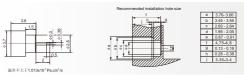


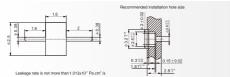


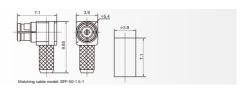


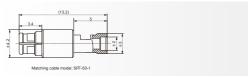


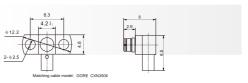


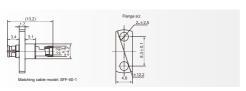


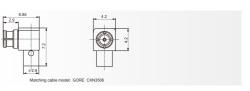


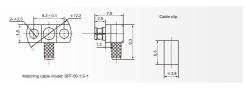


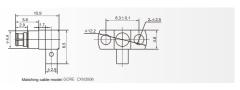


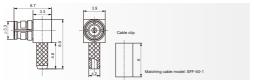


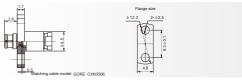


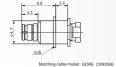


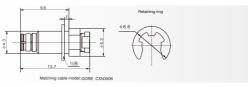




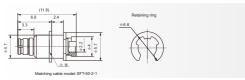


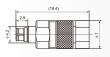


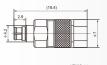


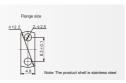


Matching cable model: GORE CXN3506

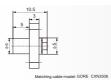


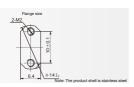


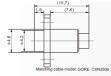

www.dolphmicrowave.com

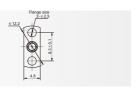


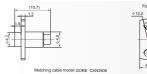
Matching cable model: UT85C-LL

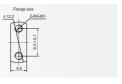


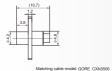


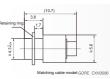


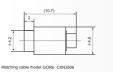


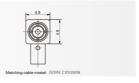




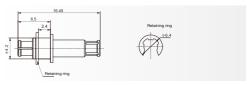




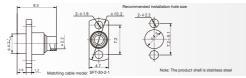


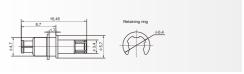


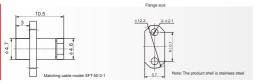
Type	L	L1
SMP-KHD	11.5	6.5
SMP-KHD1	14.2	9.2

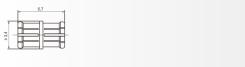


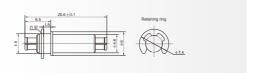
Type	L
SMP-KK1	6.45
SMP-KK3	10.3
SMP-KK4	8.65
SMP-KK5	-11
SMP-KK20	13
SMP-KK26	9.45
SMP-KK34	9.05
SMP-KK35	16.5

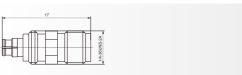


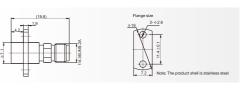


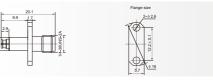


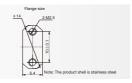


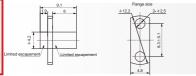


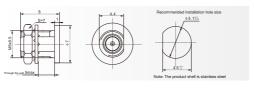




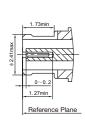


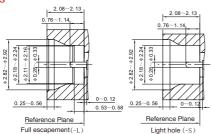




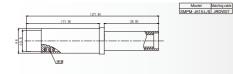


SMPM

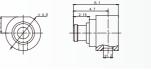

Type SMPM series products are ultra small push in RF coaxial connectors with structural characteristics similar to SMP, but with a smaller volume than SMP. It has the characteristics of small size, light weight, easy use, wide working frequency band, and allows for a certain degree of axial and radial misalignment, making it suitable for modular intensive installation. The SMPM series plug has two interface forms: full release and light hole, which can provide two types of connection protection to meet different usage environments.

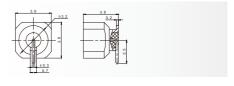

Key Performance

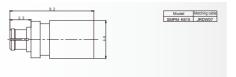
			Frequency Range		DC~65GHz		
Insulation resistance ≥5000M Ω			Dieletric Withstanding Voltage 500V		500V		
Contact Resis	stance	Center Conducto	Center Conductor \leqslant 6. 0 m Ω , Outer Conductor \leqslant 2. 0 m Ω				
RF Insertion I	oss	≤0.07√F(GHz) dB					
	Frequency	DC~18GHz	18∼26. 5GHz		26.5∼40GHz		40∼65GHz
VSWR	Straight	1. 15	1.2		1.35		1. 6
	Right Angle	1. 3					_
Durability		500 times (-S)		100 times (-L)			

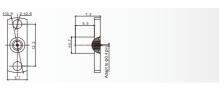

Materials & Plating

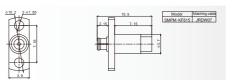
	Male Center	Tin phosphor bronze, gold plated		Brass, gold or nickel plated
Central Contacts	Contacts	Kovar, gold plated	Housing and other metal parts	Stainless Steel, Passivated
	Female Center Contacts	Beryllium bronze, gold plated		Kovar Alloy, Gold-plated
Insulation medium		PTFE or glass, etc.	Elastic parts	

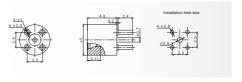


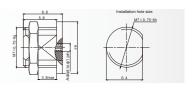


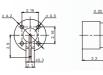


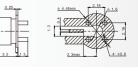


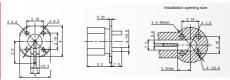


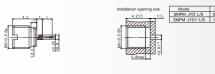


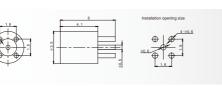


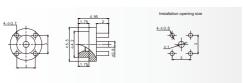


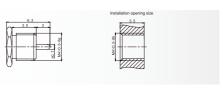


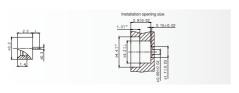


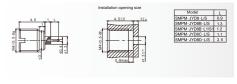


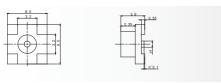


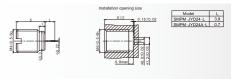


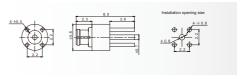


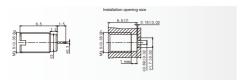


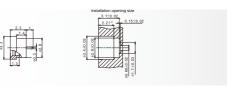


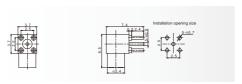


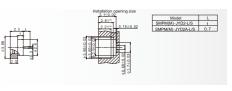


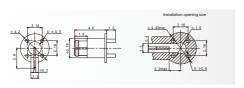


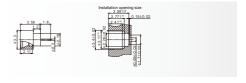


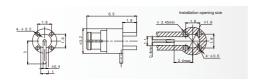


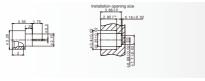


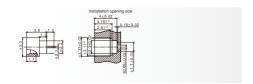


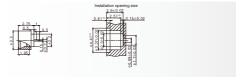


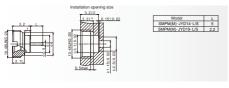


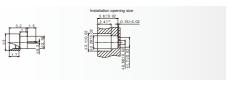


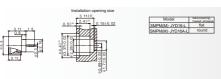


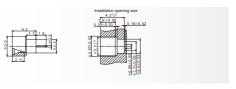


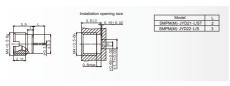


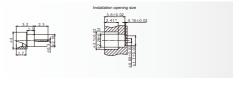


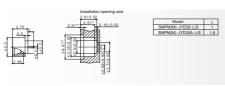


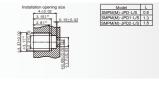






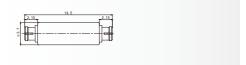


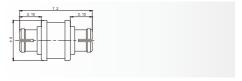


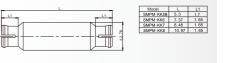


www.dolphmicrowave.com

106

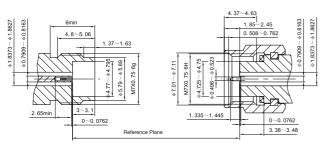






SMPM-KK	6.45	1.73	42.8
SMPM-KK11	4.32	1.73	φ2.8
SMPM-KK13	9	1.73	Φ2.8
SMPM-KK14	4	1.75	02.4
SMPM-KK17	5	2	Φ2.4
SMPM-KK18	3.6	1, 55	42.4

1.85mm

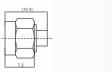

The 1.85 series millimeter wave coaxial connector adopts an air interface, with a frequency of up to 67GHz, and can be used with 24 series products are compatible and interchangeable. It has the advantages of small size, light weight, high frequency of use, and reliable connection, and is widely used in modern precision measurement fields and various millimeter wave communication equipment.

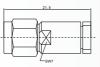
Key Performance

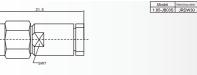
Characteristic Impedace	50 Ω		Frequency		DC~ 50 GHz	
Insulation resistance	≥5000M Ω		Dieletric W Voltage	/ithstanding	500V	
Contact Resistance	Center Conductor≤4, 0m Ω ,Outer Conductor≤2. 5m Ω					
RF Insertion loss	≤0.05 √F(GHz) dB		Durab	Durability		imes
VSWR	DC∼27GHz	27~	40GHz	40∼50GHz		50∼67GHz
VOVIII	1, 15	1.2		1. 3		1. 4

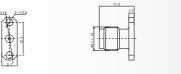
Materials & Plating

			Brass, Gold Plating	Body and other	Brass, Gold Plating	
			Beryllium, Gold Plating	Metal Parts	Stainless Steel, Passivated	
	Gaskets		Sillion Rubber			

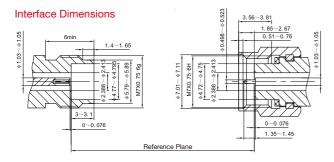








2.4mm

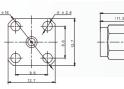

Type 2.4mm series millimeter wave coaxial connector adopts an air interface and operates at a frequency of 50GHz, which can be interchanged with 1.85 series products. It has the advantages of small size, lightweight torsion, high frequency of use, and reliable connection, and is widely used in modern precision measurement fields and various millimeter wave communication equipment.

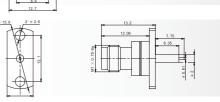
Key Performance

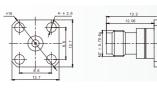
Characteristic Impedace	50 Ω		Frequency Range		DC∼4 0 GHz
Insulation resistance	≥5000M Ω		Dieletric Withstanding Voltage		750V
Contact Resistance	Center Conductor≤3. 0m Ω ,Outer Conductor≤2.0 m Ω				
RF Insertion loss	≤0.05 √F(GHz)	dB	Durability		500 times
VSWR	DC∼ 27 GHz		$27\!\sim\!40\text{GHz}$		
VOVIN	1. 15		1.2		

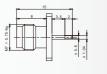
Materials & Plating

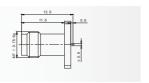
Central	Female Center	Brass, Gold Plating	Body and other	Brass, Gold Plating	
Contacts		Beryllium, Gold Plating	Metal Parts	Stainless Steel, Passivated	
Ga	skets	Sillion Rubber			

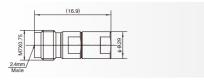


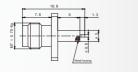


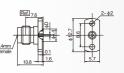


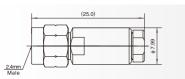


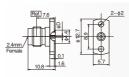




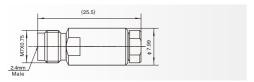


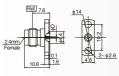




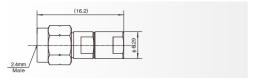


Туре	Cable type
2.4-KFD2812	0.012inch / 0.30mm
2.4-KFD2815	0.015inch / 0.38mm
2.4-KFD2818	0.018inch / 0.46mm
2.4-KFD2820	0.020inch / 0.51mm

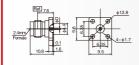




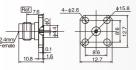
Туре	Cable type
2.4-KFD2912	0.012inch / 0.30mm
2.4-KFD2915	0.015inch / 0.38mm
2.4-KFD2918	0.018inch / 0.46mm
2.4-KFD2920	0.020inch / 0.51mm

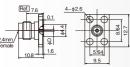


Туре	Cable type
2.4-KFD21012	0.012inch / 0.30mm
2.4-KFD21015	0.015inch / 0.38mm
2.4-KFD21018	0.018inch / 0.46mm
2.4-KFD21020	0.020inch / 0.51mm



Ref. 7.6	2-φ2.6
2.4mm Female	12/2
10.8 - 1.6	5.7

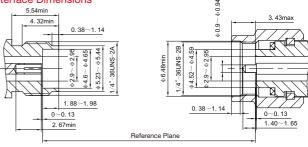

Туре	Cable type
2.4-KFD21212	0.012inch / 0.30mm
2.4-KFD21215	0.015inch / 0.38mm
2.4-KFD21218	0.018inch / 0.46mm
2.4-KFD21220	0.020inch / 0.51mm


Туре	Cable type
2.4-KFD4612	0.012inch / 0.30mm
2.4-KFD4615	0.015inch / 0.38mm
2.4-KFD4618	0.018inch / 0.46mm
2.4-KFD4620	0.020inch / 0.51mm

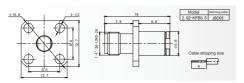
Туре	Cable type
2.4-KFD4912	0.012inch / 0.30mm
2.4-KFD4915	0.015inch / 0.38mm
2.4-KFD4918	0.018inch / 0.46mm
2.4-KFD4920	0.020inch / 0.51mm

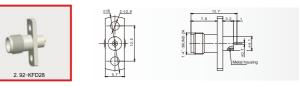
	Туре	Cable type
Ī	2.4-KFD4512	0.012inch / 0.30mm
	2.4-KFD4515	0.015inch / 0.38mm
Ţ	2.4-KFD4518	0.018inch / 0.46mm
	2.4-KFD4520	0.020inch / 0.51mm

K2.92mm

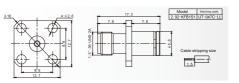

Series KRF coaxial connectors are precision millimetre-wave connectors developed from series SMA. Which have the good features of small size, Light weight, high frequency range and Superior reliability, are widely used in the modem precision measurement and micro-wave communication equipment. Which also can be interexchangeable with series SMA and APC3.5.

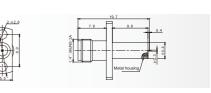
Key Performance

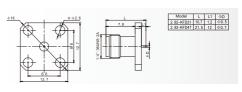

Characteristic Impedace	50 Ω		Frequency Rang	е	DC∼67GHz
Insulation resistance	≥5000MΩ		Dieletric Withstar Voltage	nding	500V
Contact Resistance	Center Conductor	≤4.0	$_{ ext{m}}\Omega$,Outer Conduc	tor≤2	2.5mΩ
RF Insertion loss	≤0.05 √F(GHz)	iΒ	Durability		500 times
VSWR	DC∼18 GHz		18∼40GHz		40∼50GHz
VOWN	1. 15		1. 2		1. 3

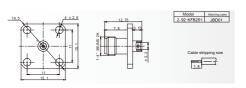

Materials & Plating

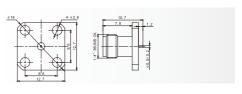
Central	Female Center	Brass, Gold Plating	Body and other	Brass, Gold Plating
Contacts	Contacts	Beryllium, Gold Plating	Metal Parts	Stainless Steel, Passivated
Ga	skets	Sillion Rubber		

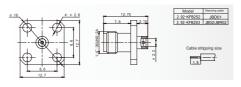


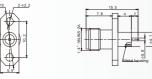


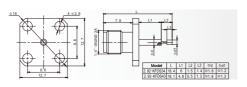


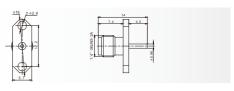


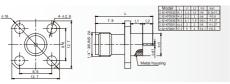


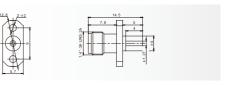


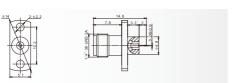


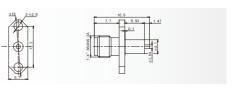


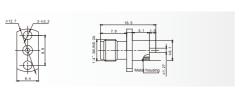


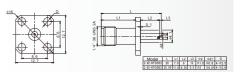


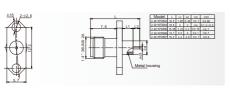


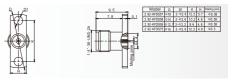


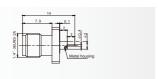




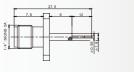


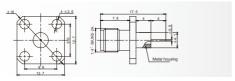


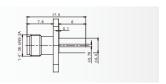


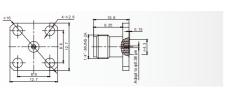


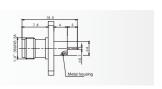
www.dolphmicrowave.com

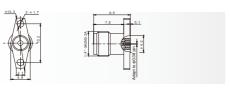


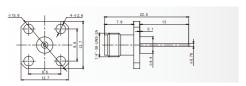


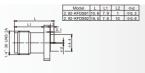


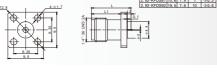


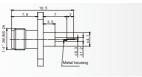


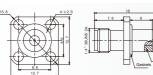


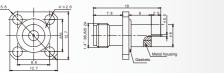


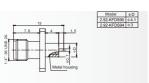


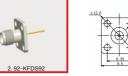


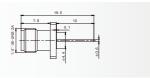


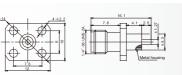


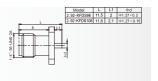


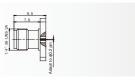


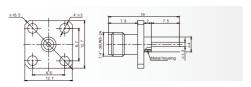


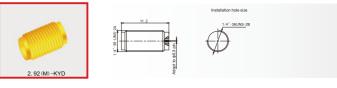


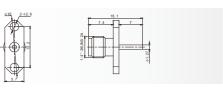


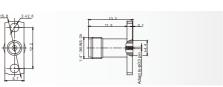


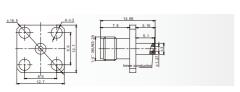


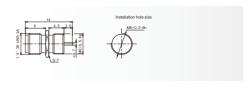


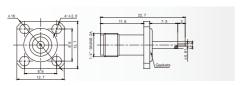


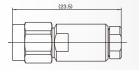


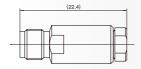






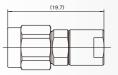


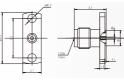


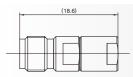


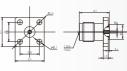
Туре	Cable type
2.92-J147A	147A

Type	Cable type
2.92-K147A	147A




	Туре	Cable type
	2.92-KFD21012	0.012inch / 0.30mm
-	2.92-KFD21015	0.015inch / 0.38mm
	2.92-KFD21018	0.018inch / 0.46mm
	2.92-KFD21020	0.020inch / 0.51mm


3506


	Type	Cable type
	2.92-KFD21212	0.012inch / 0.30mm
-[2.92-KFD21215	0.015inch / 0.38mm
	2.92-KFD21218	0.018inch / 0.46mm
	2.92-KFD21220	0.020inch / 0.51mm

Type	Cable type
2.92- K3506	3506

	Туре	Cable type
	2.92-KFD4612	0.012inch / 0.30mm
-	2.92-KFD4615	0.015inch / 0.38mm
	2.92-KFD4618	0.018inch / 0.46mm
	2.92-KFD4620	0.020inch / 0.51mm

- 35		
	Туре	Cable type
	2.92-KFD2812	0.012inch / 0.30mm
	2.92-KFD2815	0.015inch / 0.38mm
tan day	2.92-KFD2818	0.018inch / 0.46mm
1.0	2.92-KFD2820	0.020inch / 0.51mm

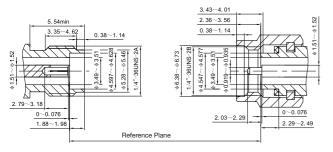
	Туре	Cable type
	2.92-KFD4912	0.012inch / 0.30mm
•	2.92-KFD4915	0.015inch / 0.38mm
	2.92-KFD4918	0.018inch / 0.46mm
	2.92-KFD4920	0.020inch / 0.51mm

Туре	Cable type
2.92-KFD2912	0.012inch / 0.30mm
2.92-KFD2915	0.015inch / 0.38mm
2.92-KFD2918	0.018inch / 0.46mm
2.92-KFD2920	0.020inch / 0.51mm

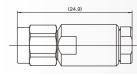
		13
3.50m Tends		-

Type	Cable type
2.92-KFD4512	0.012inch / 0.30mm
2.92-KFD4515	0.015inch / 0.38mm
2.92-KFD4518	0.018inch / 0.46mm
2.92-KFD4520	0.020inch / 0.51mm

3.5mm

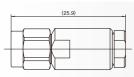

The 3.5mm series millimeter wave coaxial connector adopts an air interface, with a frequency of up to 33GHz, and can be docked and exchanged with SMA series and 2.92 series products. It has the advantages of small size, light weight, high frequency of use, and reliable connection, and is widely used in modern precision measurement fields and various millimeter wave communication equipment

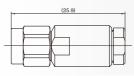
Key Performance

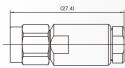

Characteristic Impedace	50 Ω	DC∼ 33 GHz	
Insulation resistance	≥5000M Ω	1000V	
Contact Resistance	Center Conductor≤3. 0m Ω ,Outer Conductor ≤2. 0m Ω		
RF Insertion loss	≤0.05 √F(GHz) dB Durability		500 times
VSWR	≤1.1+0.005F(GHz)		

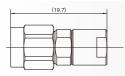
Materials & Plating

Central	Female Center	Brass, Gold Plating Body and oth	Body and other	Brass, Gold Plating
Contacts	Contacts	Beryllium, Gold Plating	Metal Parts	Stainless Steel, Passivated
Gaskets		Sillion Rubber		



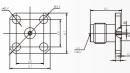

Cable type
147A

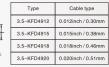

Type	Cable type	
3.5-J205A	205A	


Type	Cable type
3.5-J500	500

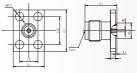
Туре	Cable type	
3.5-J550	550	

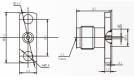
Type	Cable type	
3.5-J3506	J3506	

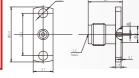


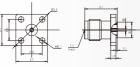


Туре	Cable type
3.5-KFD2812	0.012inch / 0.30mm
3.5-KFD2815	0.015inch / 0.38mm
3.5-KFD2818	0.018inch / 0.46mm
3.5-KFD2820	0.020inch / 0.51mm



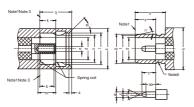

Туре	Cable type
3.5-KFD2912	0.012inch / 0.30mm
3.5-KFD2915	0.015inch / 0.38mm
3.5-KFD2918	0.018inch / 0.46mm
3.5-KFD2920	0.020inch / 0.51mm


	Туре	Cable type
1	3.5-KFD4512	0.012inch / 0.30mm
16	3.5-KFD4515	0.015inch / 0.38mm
1.1	3.5-KFD4518	0.018inch / 0.46mm
	3.5-KFD4520	0.020inch / 0.51mm


Туре	Cable type	
3.5-KFD21012	0.012inch / 0.30mm	
3.5-KFD21015	0.015inch / 0.38mm	
3.5-KFD21018	0.018inch / 0.46mm	
3.5-KFD21020	0.020inch / 0.51mm	

0.012inch / 0.30mm
0.015inch / 0.38mm
0.018inch / 0.46mm
0.020inch / 0.51mm

Туре	Cable type
3.5-KFD4612	0.012inch / 0.30mm
3.5-KFD4615	0.015inch / 0.38mm
3.5-KFD4618	0.018inch / 0.46mm
3.5-KFD4620	0.020inch / 0.51mm


BMA

Type BMA are snap—on coupling miniature RF coaxial connectors, which are especially designed for blind mate applications in low power microwave comunication system, military and civil data microwave comunication system where high reliability and easy assembly will be required. The interface mating dimensions and technical characteristics are according to the standard of IEC1169-33.

Key Performance

Characteristic Impedace 50 Ω		Frequency Range	0~18GHz		
Insulation resistance	≥5000M Ω	Dieletric Withstanding Voltage	1000V		
Contact Resistance	Center Conductor ≤ 0.003Ω , Outer Conductor ≤ 0.002				
VSWR	≤1.15+0.012f	Temperature range	-65~+125°C		

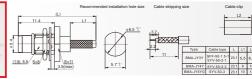
Interface Dimensions

Symbol	MIN (mm)	MAX (mm)	Note	Symbol .	MIN(mm)	MAX(mm)	Note
a	a 0.38 0.51		Chamfer	q	-	5.029	
b	b 2.845 =		4,6	s	ф 7.370	-	
d	ф4.090 (Nominal value)	Diameter	t	Ф 5.720	-	Diameter
е	-	-	2 Diameter	u	-	-	Diameter
f	φ4.880 (Nominal value)		Diameter	v	-	0.380	4 Diameter
g	5.309 5.359		Diameter	w	ф 0.9017	ф0.9398	Diameter
h	ф7.620	(Nominal value)	Diameter	×	3.252	3.429	Diameter
k	3.048	3.225	3	z	2.159	2.413	
m	2.921	-		aa	1.346	-	
р	5.055	-	-	-	-	-	

Note 1: Mechanical and electrical reference planes

Note 2: When the hole is mated with a pin with a diameter of 0.9017/0.9398mm (0.0355/0.0370in), the electrical and mechanical performance requirements are met.

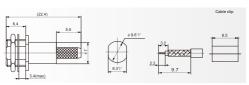
Note 3: To the bottom of the spring.

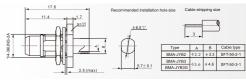

Note 4: Meet the electrical and mechanical performance requirements

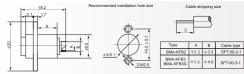
Note 5: The design and positioning of the seal are arbitrary, but when the interface gap is not greater than 0.38mm (0.015in), it should be ensured that the environmental performance requirements can be met.

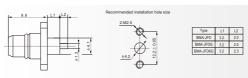
Note 6: From the reference plane to the electrical and mechanical contact parts

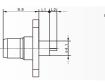
Note: Models with a G at the end have stainless steel housings.

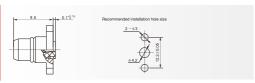


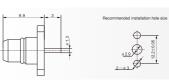


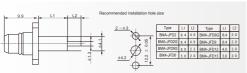


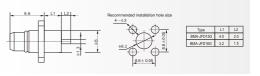


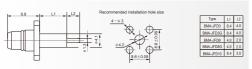


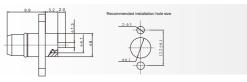


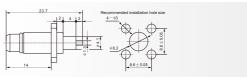


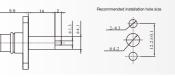


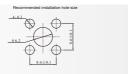




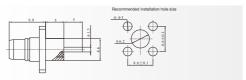


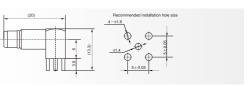


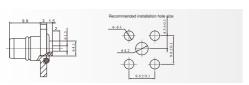


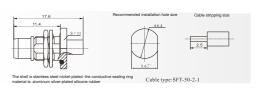


136

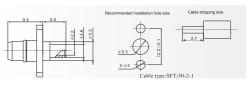


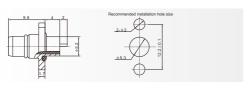


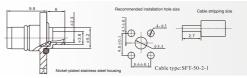


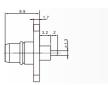


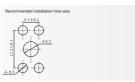


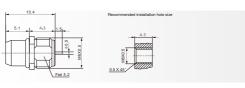


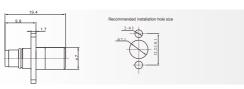


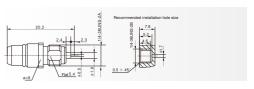


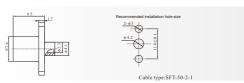


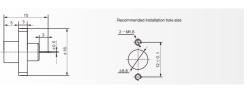


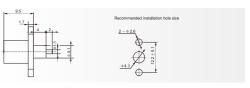


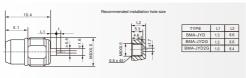


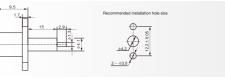


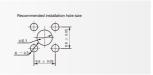


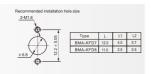


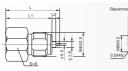


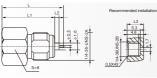


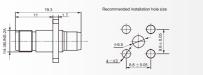


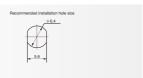

Recommended installation hole size

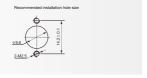






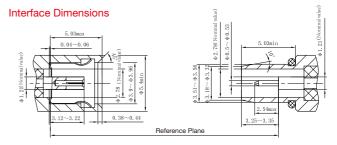




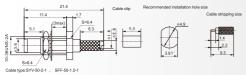




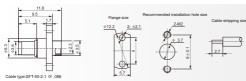
SBMA

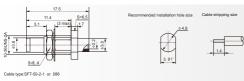

The SBMA series RF coaxial connector is a new type of low-power transmission blind plug connector, which is a miniaturized product of the BMA series connector. It has the characteristics of fast insertion and removal, easy connection, small size, light severity, high frequency of use, and can float in both axial and radial directions. It is suitable for blind fit of chassis and cabinets, and is conducive to the modularization of radar and other whole machine systems.

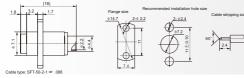
Key Performance

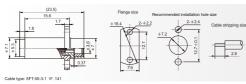

Characteristic Impedace		50 Ω	Durability		1000 times
Insulation resistance		≥5000MΩ	Dieletric Withstanding Voltage		675V
Contact Resistance	Center Cond	uctor \leqslant 8. 0 m Ω	ctor≤3.0r	ηΩ	
Frequency Range	Straight DC~28GHz		RF Insertion	Straight	≤0.05√F(GHz) dB
Trequency mange	Right Angle DC~18GHz		loss	Right Angle≤0, 08√F(GHz) dB	
VSWR	Straight ≤1. 05+0. 012F (GHz)				
VOWIT	Right Angle	≤1.06+0.015F (GHz)			

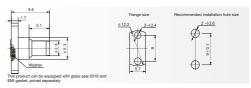
Materials & Plating

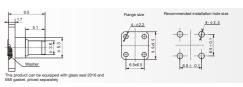

	Central	Pin	Tin phosphor bronze, gold plated			Body and other Brass, gold or nickel pla		Brass, gold or nickel plated
	Contacts	Jack	Beryllium bronze, gold plated			Stainless steel, passivated		
Γ	Insulators		PTFE	Elastic parts	Ве	eryllium bronze, gold plated		
Γ	Gaskets		Silicone Rubber					

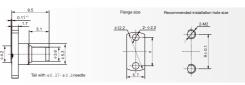


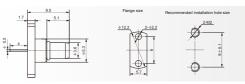


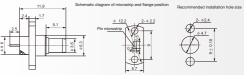


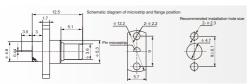


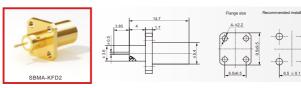


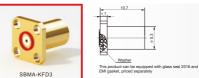




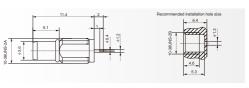


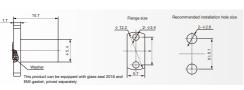


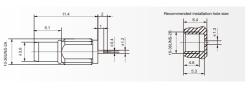


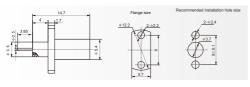


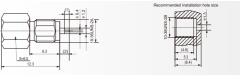


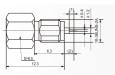




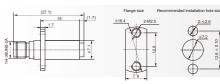


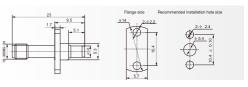


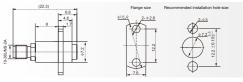


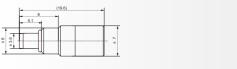






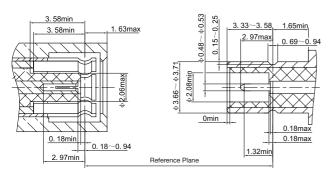




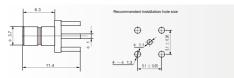


SMB

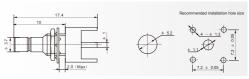
Type SMB is one kind of miniature RF coaxial connectors with snap-on coupling mechanism. The characteristic of this type is in small size, light weight, easy to use and excellent electrical performiance, they are widely used in radio communication, test equipment, TV base-station and micro-wave system. The interface matting dimensions and technical characteristics are according to the standard of MIL-C-39012, IEC169-10 and CECC22130.

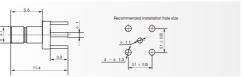

Key Performance

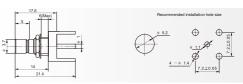
Characteristic In	npedace	50 Ω	Frequency Range		DC $\sim 4\mathrm{GHz}$	
Insulation resist	Insulation resistance		Dieletric Withstanding Voltage		750V	
Contact Resistance	Center Cond	uctor ≤6.0mΩ	Ω, Outer Conductor ≤1.0mΩ			
VSWR	Straight ≤ 1.3		RF Insertion	Straight ≤0.06√F(GHz) dB		
VOVIN	Right Angle ≤ 1.5		loss	Right Angl	e≤0.10√F(GHz) dB	
Durability	500times			_	_	

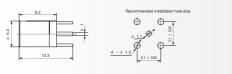

Materials & Plating

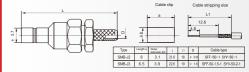
Central	Pin	Tin phosphor bronze, gold plated	Body and other	erBrass, gold or nickel plated
Contacts	Jack	Beryllium bronze, gold plated	Metal Parts	Stainless steel, passivated
Insulators		PTFE	Elastic parts	Beryllium bronze, gold plated

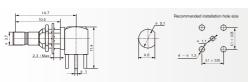

Interface Dimensions

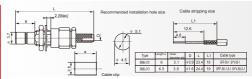


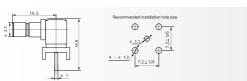


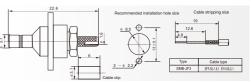


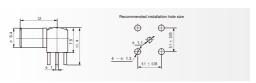


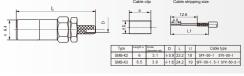


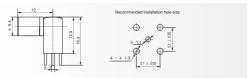


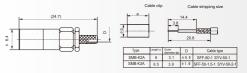


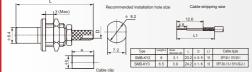


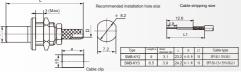


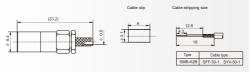


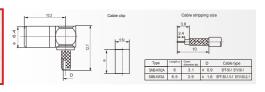


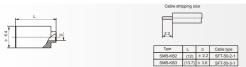


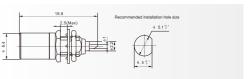


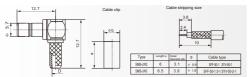


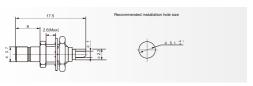


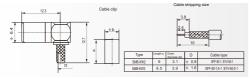


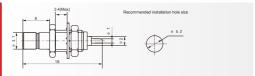


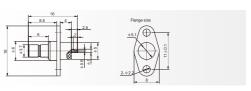


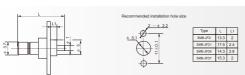


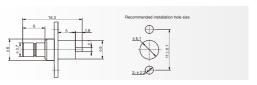


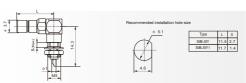


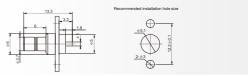


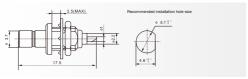


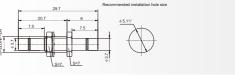


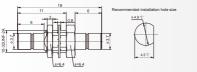


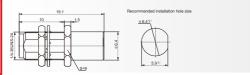


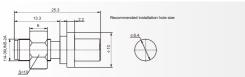


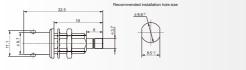


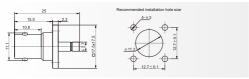


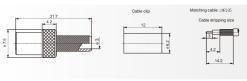


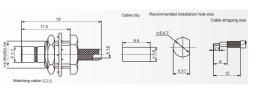


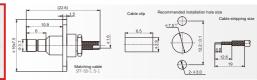


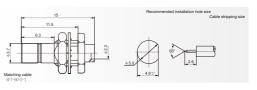


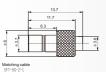


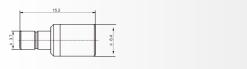


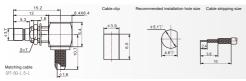


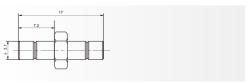


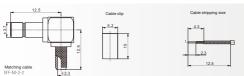


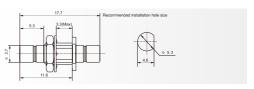


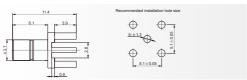


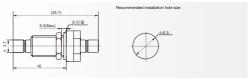


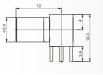


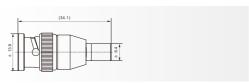


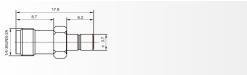


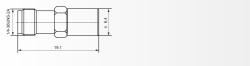


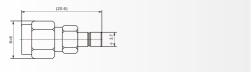


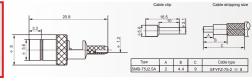


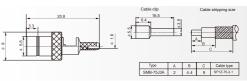


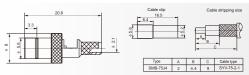


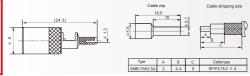


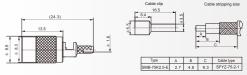


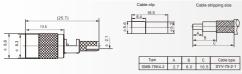


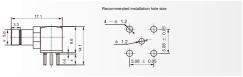


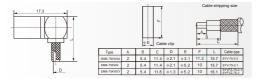


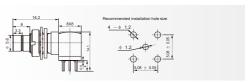


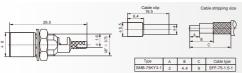


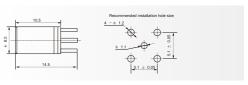


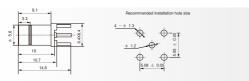


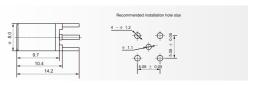


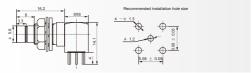






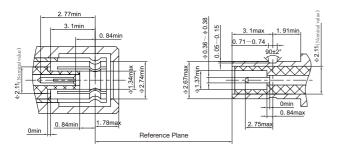




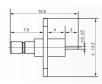


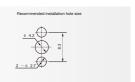
SSMB

Type SSMB is one kind of microminiature RF coaxial connectors with snap-on coupling mechanism, which is the smaller version of SMB connectors, they have the excellent performance of light weight, small size, easy to connect/discoect, vibration-proof, high reliability, which are widely used in connecting RF coaxial circuits and cables in micro electrical instrument. The interface mating dimensions and technical characteristics are according to the standard of MII-C-39012.CEC022170andIEC169-19

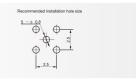

Key Performance

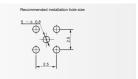
Characteristic Impedace		50 Ω	Frequency Range		DC∼ 3 GHz
Insulation resistance		≥1000MΩ	Dieletric Withstanding Voltage		500V
Contact Resistance	Center Cond	uctor ≪5.0mΩ	Outer Conductor ≤ 2.5 m Ω		
VSWR	Straight ≤ 1.3		RF Insertion	Straight	≤0.06√F(GHz) dB
VSWR	Right Angle ≤ 1.5		loss	Right Angle≤0.10 √ F(GHz) dB	
Durability	500times				

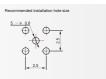

Materials & Plating

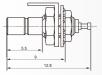

Central	Pin	Tin phosphor bronze, gold plated	Body and other	rBrass, gold or nickel plated
Contacts Ja		Beryllium bronze, gold plated	Metal Parts	Stainless steel, passivated
Insulators		nsulators PTFE		eryllium bronze, gold plated

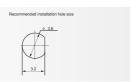
Interface Dimensions

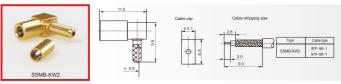


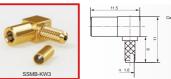


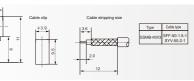


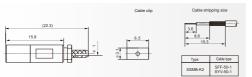


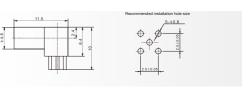


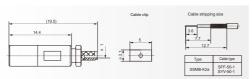


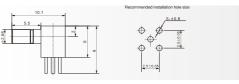


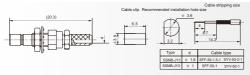


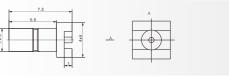


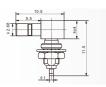


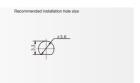


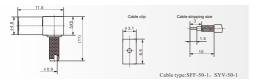


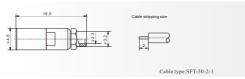








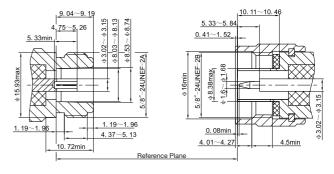




Ν

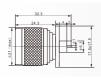
TYPE N are very popular screw-coupling middle-power coaxial connectors, which has the excellent performance of great vibration-proof, high reliability, superior electrical and mechanical properties, They are widely used for communication applications where vibration resistance and harsh environment is required. The interface mating dimensions and technical characteristics are according to the standard of MIL-C-39012. IEC60169-16 and CECC22210.

Key Performance

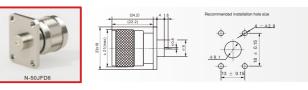

Characteristic Impedace		50 Ω	Frequency Range		DC∼11GHz
Insulation resistance		≥1000MΩ	Dieletric Withstanding Voltage		1500V
Contact Resistance	Center Cond	uctor ≤2.5 mΩ	, Outer Conductor ≤0.2 m Ω		
VSWR	Straight ≤ 1.25		RF Insertion	Straight ≤0.06√F(GHz) dB	
VSWR	Right Angle ≤ 1.4		loss	Right Angle≤0.10 √ F(GHz) dB	
Durability	500times	3	_	_	_

Materials & Plating

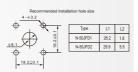
Central	Pin	Tin phosphor bronze, gold plated	Body and oth	erBrass, gold or nickel plated
Contacts	Jack	Beryllium bronze, gold plated	Metal Parts	Stainless steel, passivated
Insulators		PTFE	Elastic parts	Beryllium bronze, gold plated

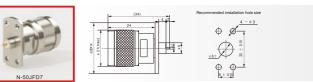

Interface Dimensions

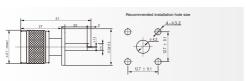
www.dolphmicrowave.com

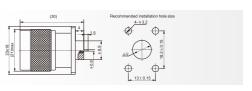


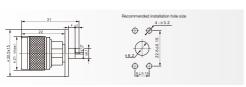
172

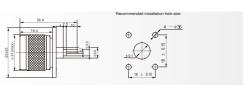


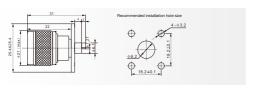


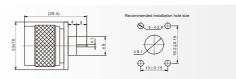


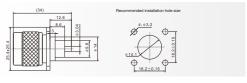


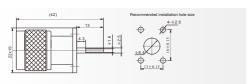


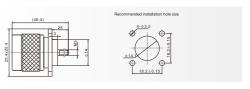


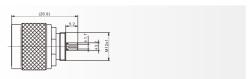


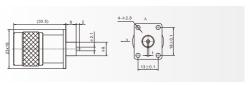


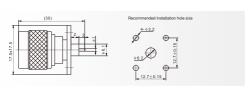


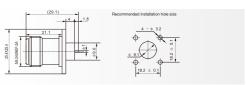


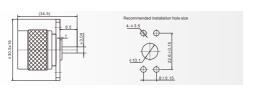


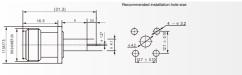




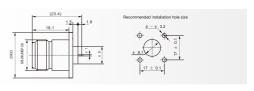


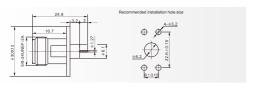


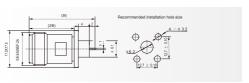


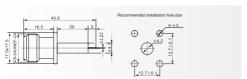


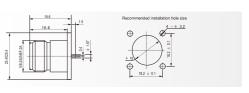


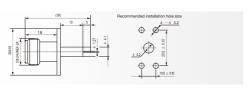


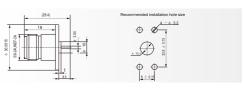


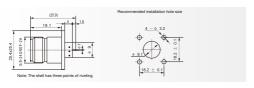


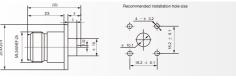


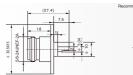


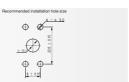


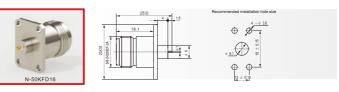


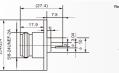


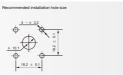


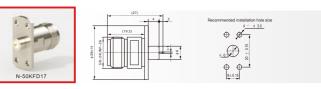


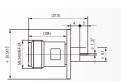


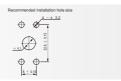


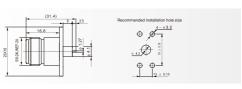


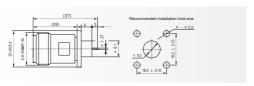


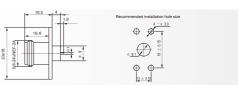


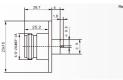


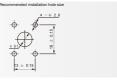


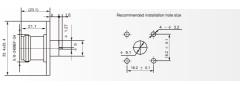


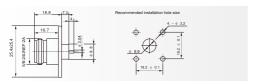


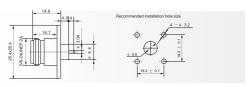


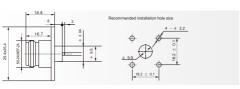


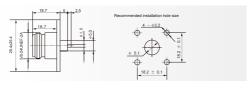




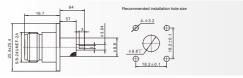


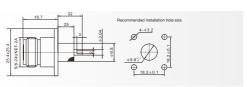


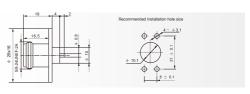


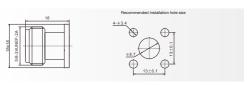


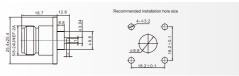


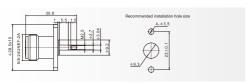


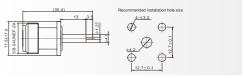


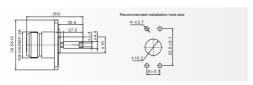


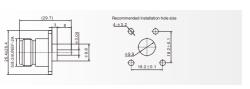


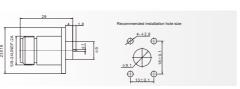


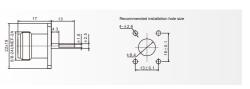


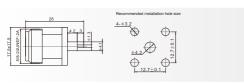


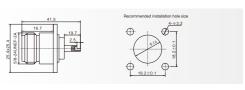


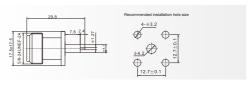


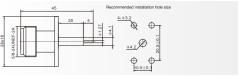


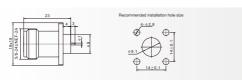


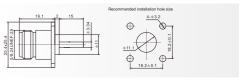


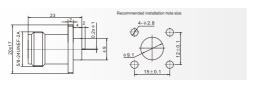


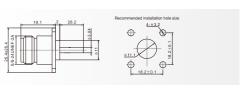


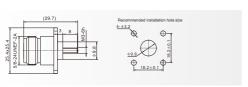


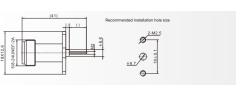


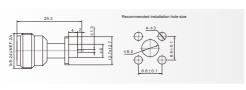


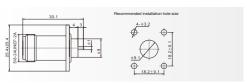


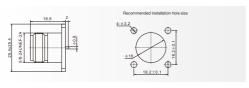


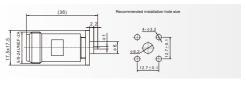


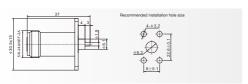


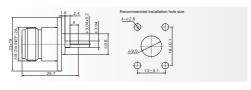


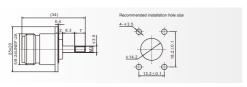


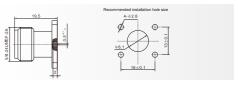


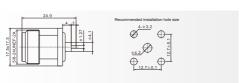


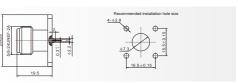


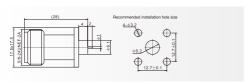


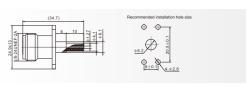


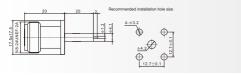


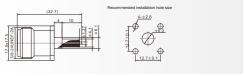


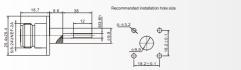


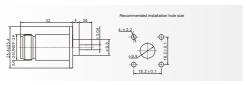


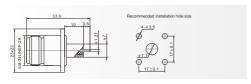


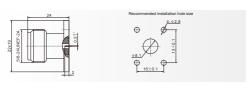


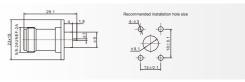


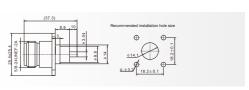


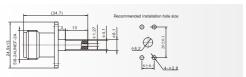


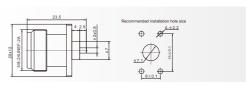


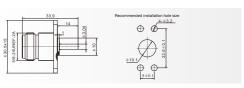


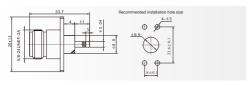


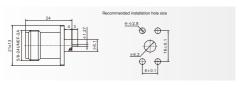


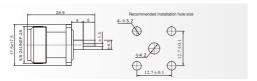


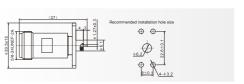


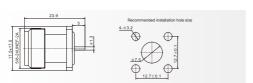


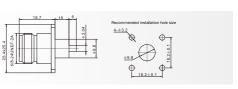


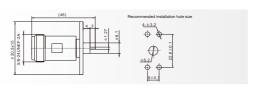


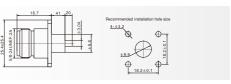


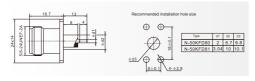


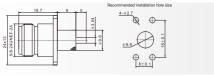


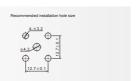




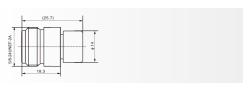




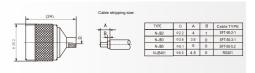


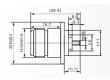


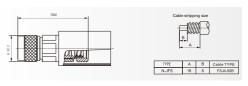


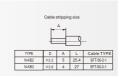


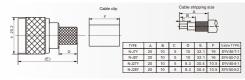


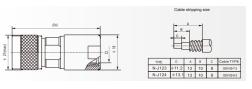


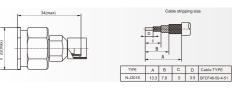


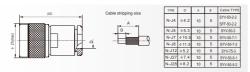


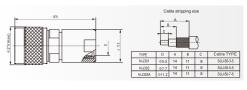


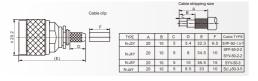


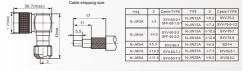


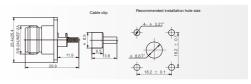


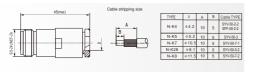


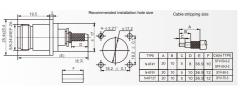


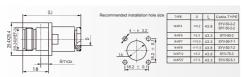


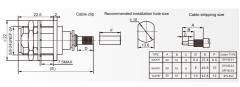


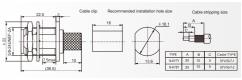


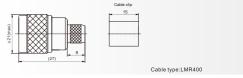






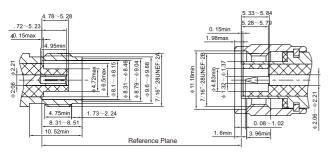




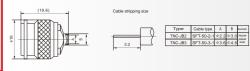


TNC

TYPE TNC are screw-coupling middle-power coaxial connectors, which has the excellent performance of great libration-proof, high reliability and wide working frequency. They are special used to connect RF cables in mobile lcation, aerospace, radar applications and all kinds of radio instruments. The interface mating dimensions and technical characteristics are according to the standard of MIL-C-39012. IEC169--17 and CECC22200.

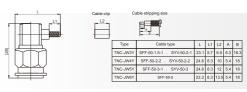

Key Performance

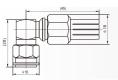
Characteristic Impedace		50 Ω	Frequency Range		DC∼11GHz
Insulation resistance		≥5000MΩ	Dieletric Withstanding Voltage		1500V
Contact Resistance	Center Cond	uctor ≤1.5 mΩ	, Outer Conductor ≤0.2 m Ω		
VSWR	Straight ≤ 1.25		RF Insertion	Straight	≤0.06√F(GHz) dB
	Right Angle ≤ 1.4		loss	Right Angl	e≤0.10 √F(GHz) dB
Durability	500times			_	_

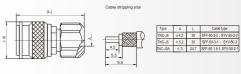

Materials & Plating

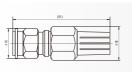
Central	Pin	Brass, Gold Plating	Body and othe	r Brass, nickel plated
Contacts	Jack	Tin phosphor bronze, gold plated	Metal Parts	Stainless Steel, Passivated
Insulators		lators PTFE		eryllium bronze, gold plated

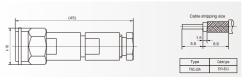
Interface Dimensions

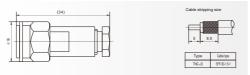


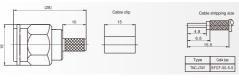


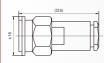


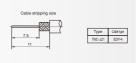


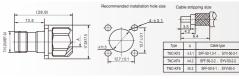


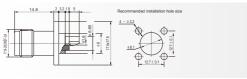


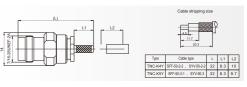


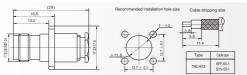


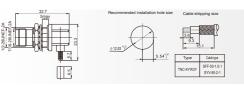


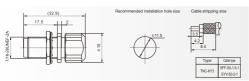


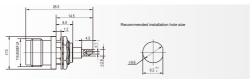


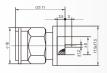


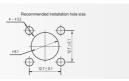


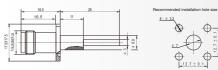


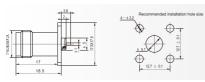


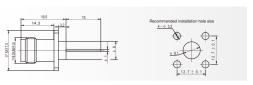


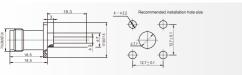


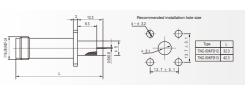


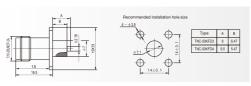


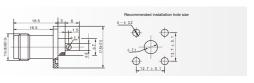


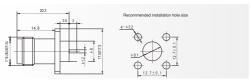


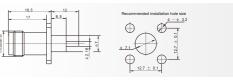


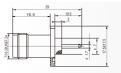


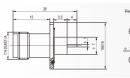


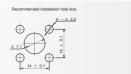


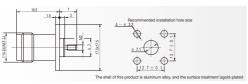


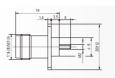


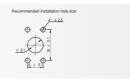


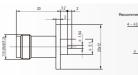


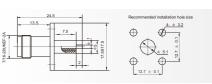


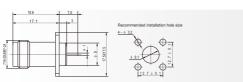


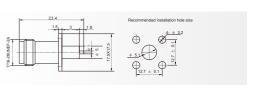


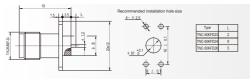


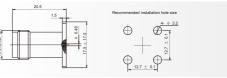


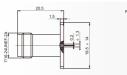


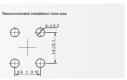


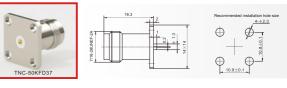


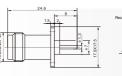


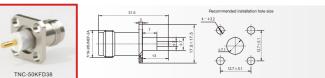


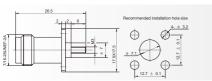


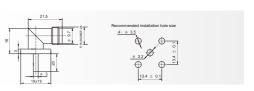


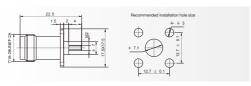




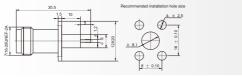


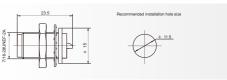


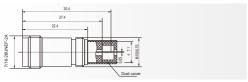


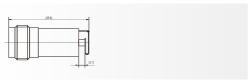


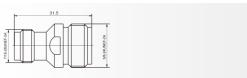


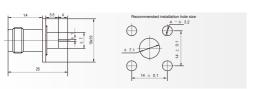


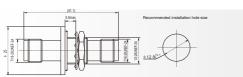


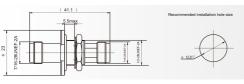


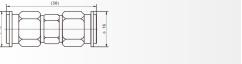


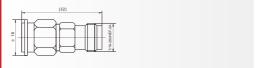


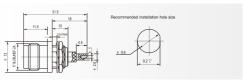


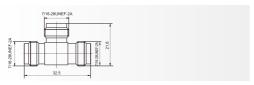


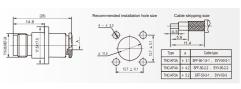


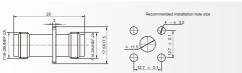


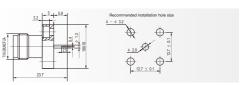


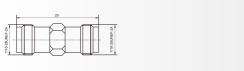


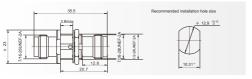


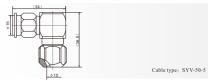


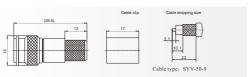


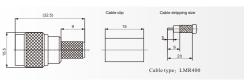


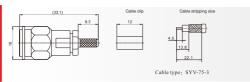


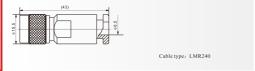


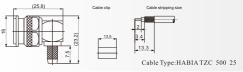




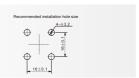


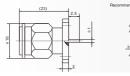


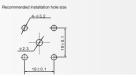


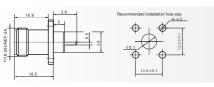


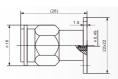


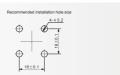


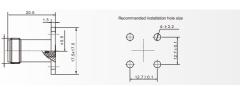


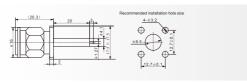


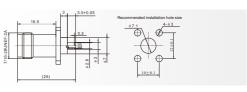


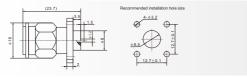


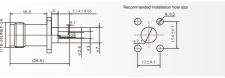


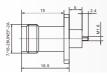


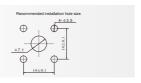


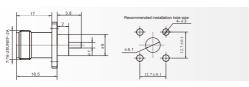




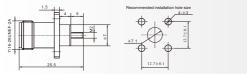


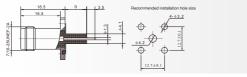


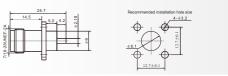


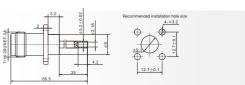


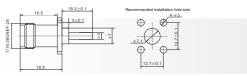






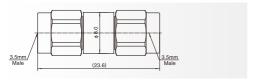




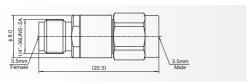


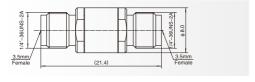
Coax Adapters

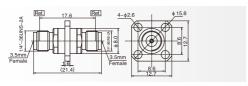
High quality RF and Microwave Connectors & Cable Assemblies.

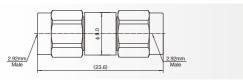

3.5mm

Key Performance
Characteristic Impedace: 50Ω
Frequency Range: DG-33GHz
Durability: 500 times
Temperature range: −60°C ~+165°C

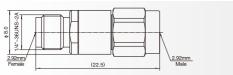




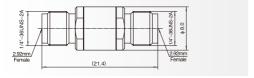


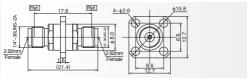

2.92mm

Key Performance
Characteristic Impedace: 50Ω Frequency Range: DC-40GHz Durability: 500 times Temperature range: -60°C ~+165°C

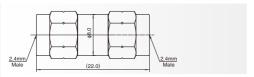

Materials/Surface Treatment

Shell: Stainless steel SU3033 polished/passivated Inner conductor: Beryllium copper, gold plated Insulator: 1PEI

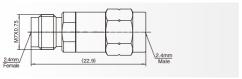




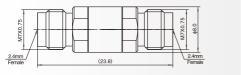
2.4mm

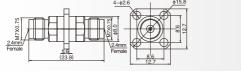

Key Performance Characteristic Impedace: 50 Ω Frequency Range: DC-50GHz Durability: 500times

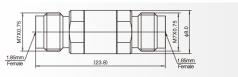
Temperature range: −60°C ~+165°C


Materials/Surface Treatment

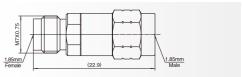
Shell: Stainless steel SU3033 polished/passivated Inner conductor: Beryllium copper, gold plated Insulator: 1PEI


2.4mm-JJ

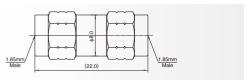


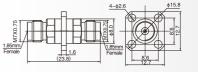


1.85mm

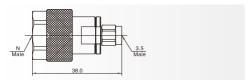

Key Performance Characteristic Impedace: 50Ω Frequency Range: DC-65GHz Durability: 500 times Temperature range: -60°C ~+165°C

Materials/Surface Treatment Shell: Stainless steel SU3033 polished/passivated Inner conductor: Beryllium copper, gold plated Insulator: 1PEI

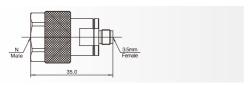




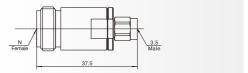
www.dolphmicrowave.com

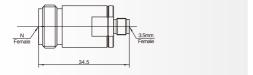


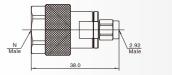
N-3.5mm

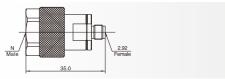

Key Performance Characteristic Impedace: 50Ω Frequency Range: DC-18GHz Durability: 500 times Temperature range: -60°C ~+165°C

Materials/Surface Treatment Shell: Stainless steel SU3033 polished/passivated Inner conductor: Beryllium copper, gold plated Insulator: 1PEI

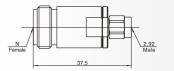


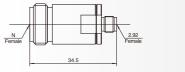


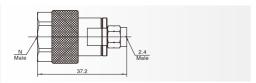



N-2.92mm

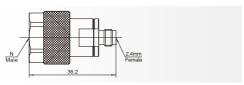
Key Performance Characteristic Impedace: 50 Ω Frequency Range: DC-18GHz Durability: 500次 Temperature range : $-60\,^{\circ}\!\mathrm{C} \sim +165\,^{\circ}\!\mathrm{C}$



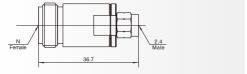


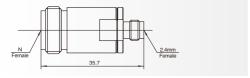


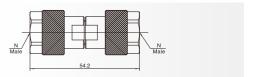
N-2.4mm


Key Performance Characteristic Impedace: 50 Ω Frequency Range: DC-18GHz

Materials/Surface Treatment Shell: Stainless steel SU3033 polished/passivated Inner conductor: Beryllium copper, gold plated Durability: 500次 Insulator: 1PEI Temperature range: $-60\% \sim +165\%$

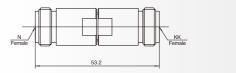

N-2.4mm-JJ

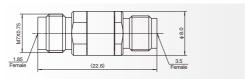




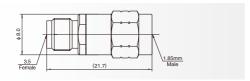

N series internal adapter

Key Performance Characteristic Impedace: 50Ω Frequency Range: DC-18GHz Durability: 500 times Temperature range: -60°C ~+165°C

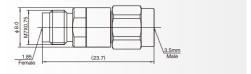


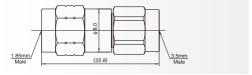


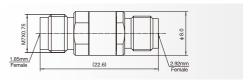
3.5mm-1.85mm

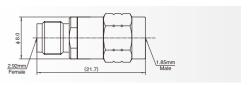

Key Performance Characteristic Impedace: 50Ω Frequency Range: 0.C-33GHz Durability: 500times Temperature range: -60°C -+165°C

Materials/Surface Treatment
Shell: Stainless steel SU3033 polished/passivated
Inner conductor: Beryllium copper, gold plated
Insulator: 1PEI

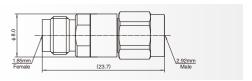


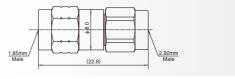


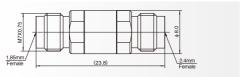



2.92mm-1.85mm

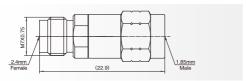
Key Performance
Characteristic Impedace: 50 Ω
Frequency Range: DC-40GHz
Durability: 500times
Temperature range: −60°C ~+165°C





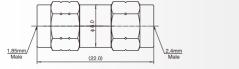


2.4mm-1.85mm

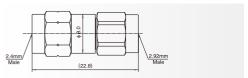

Key Performance
Characteristic Impedace: 50 Ω
Frequency Range: DC-50GHz
Durability: 500 times
Temperature range: -60°C -+165°C

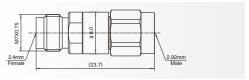
Materials/Surface Treatment
Shell: Stainless steel SU3033 polished/passivated
Inner conductor: Beryllium copper, gold plated
Insulator: 1PEI



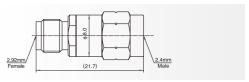


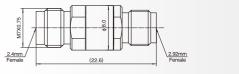
M7X0.75

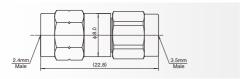



2.92mm-2.4mm

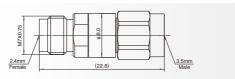
Key Performance
Characteristic Impedace: 500
Frequency Range: DC-40GHz
Durability: 500 times
Temperature range: -60°C -+165°C



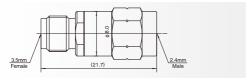


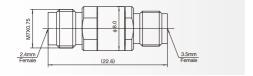


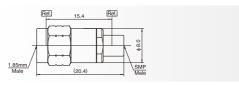
3.5mm-2.4mm

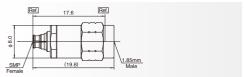

Key Performance Characteristic Impedace: 50Ω Frequency Range: DC-33GHz Durability: 500 times Temperature range: -60°C ~+165°C

Materials/Surface Treatment Shell: Stainless steel SU3033 polished/passivated Inner conductor: Beryllium copper, gold plated Insulator: 1PEI

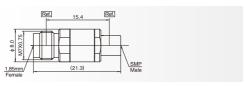

3.5mm-2.4mm-JJ



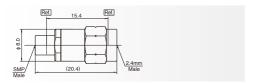

235


1.85mm-SMP

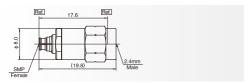
Key Performance Characteristic Impedace: 50Ω Frequency Range: DC-33GHz Durability: 500 times Temperature range: −60°C ~+165°C



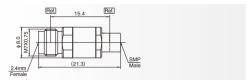


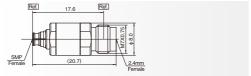


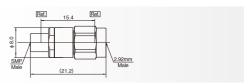
2.4mm-SMP

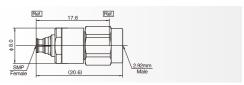

Key Performance
Characteristic Impedace: 50Ω
Frequency Range: DC-33CHz
Durability: 500 times
Temperature range: -60°C -+165°C

Materials/Surface Treatment
Shell: Stainless steel SU3033 polished/passivated
Inner conductor: Beryllium copper, gold plated
Insulator: 1PEI

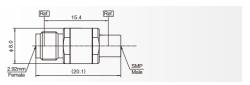


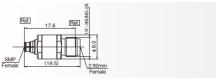





2.92mm-SMP

Key Performance
Characteristic Impedace: 50Ω
Frequency Range: DC-33GHz
Durability: 500 times
Temperature range: -60°C -+165°C





High quality RF and Microwave Connectors & Cable Assemblies.

Coax Cable & Cable Assemblies

High Performance Coax Cable & Cable Assemblies

The RF cable assembly is made up of a section of cable connected to two RF coaxial connectors. It is a complete transmission line. Only it (not the connector or cable) can realize the transmission of RF signals and energy.

RF cable assembly is one of the key components in the transmission system. Its role is very important, and its performance will seriously affect the working quality of the transmission system. The performance of RF cable assembly, especially the voltage standing wave ratio performance, depends not only on the performance of RF cable and RF connector, but also on the installation process of connector. There are often cases where the performance of cable assembly does not meet the specified requirements due to improper installation of connector. Therefore, it is recommended that users with conditions directly purchase cable assemblies produced by professional manufacturers to avoid unnecessary trouble and economic losses. The insertion loss of cable assembly mainly depends on the attenuation of RF cable, and its value is the standard attenuation of dry cable (I dB/mx cable length) plus twice the insertion loss value of connector. Therefore, when purchasing cable assembly, the attenuation characteristics of cable must be fully considered.

There are many classifications of RF cable assemblies, but the more practical one is to classify them according to their use. RF cable assemblies can be divided into five categories: general cable assemblies (IT type), high-performance cable assemblies (IGX type), low-loss cable assemblies (IDH type), stable phase cable assemblies (WX type) and test cable assemblies (ICS type). If there are no special requirements for performance, general cable assemblies can be selected. If there are high requirements for voltage standing wave ratio, high-performance cable assemblies can be selected. If there are special requirements for attenuation, low-loss cable assemblies or stable phase cable assemblies can be selected. If there are special requirements for phase consistency, bending phase stability, and especially temperature phase stability, stable phase cable assemblies must be selected. If multiple uses are required and the performance is required to be particularly stable, test cables can be selected.

When purchasing RF cable assemblies, the connector model, cable model, assembly length, and the marking content and placement of the mark should be specified. If the measurement position of the cable assembly length is inconsistent with the company's model naming method, it should be clearly stated.

General Cable Assemblies

241

DRT-NJ / NJXXX

Main performance of several typical cable assemblies

Cable assembly model	Frequency range	VSWR	Insertion loss Db Max
DRT-SMAJ/SMAJXXX	0 ~ 18GHz	≤1.20	
DRT-SMAJ/SMAKXXX	0 ~ 18GHz	≤1.25	
DRT-NJ/NJXXX	0 ~ 18GHz	≤1.25	Cable standard
DRT-NJ/NKXXX	0 ~ 18GHz	≤1.30	attenuation +2×0.06√f(GHz)
DRT-SMPK/SMPKXXX	0 ~ 18GHz	≤1.25	
DRT-SSMAJ/SSMAJXXX	0 ~ 18GHz	≤1.25	
DRT-TNCJ/TNCJXXX	0 ~ 18GHz	≤1.25	

High Performance Cable Assemblies

DRGX-2.92J/2.92JXXXCable Assemblies

DRGX-3.5J/3.5JXXXCable Assemblies

Main performance of several typical cable assemblies

Cable assembly model	Frequency range	VSWR	Insertion loss Db Max
DRGX-2.92J/2.92JXXX	0 ~ 40GHz	≤1.30	
DRGX-2.92J/2.92KXXX	0 ~ 40GHz	≤1.35	
DRGX-3.5J/3.5JXXX	0 ~ 26.5GHz	≤1.25	Cable standard
DRGX-3.5J/3.5KXXX	0 ~ 26.5GHz	≤1.30	attenuation +2×0.06√f(GHz)
DRGX-SMAJ/SMAJXXX	0 ~ 26.5GHz	≤1.35	
DRGX-NJ/NJXXX	0 ~ 18GHz	≤1.25	
DRGX-NJ/SMAJXXX	0 ~ 18GHz	≤1.25	

Low Loss Cable Assemblies

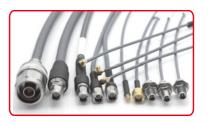
243

DRDH-SMAJ/SMAJXXX Cable Assemblies DRDH-3.5J/3.5JXXX Cable Assemblies

Main performance of several typical cable assemblies

Cable assembly model	Frequency range	VSWR	Insertion loss Db Max
DRDH-2.92J/2.92JXXX	0 ~ 40GHz	≤1.25	
DRDH-2.92J/2.92KXXX	0 ~ 40GHz	≤1.30	
DRDH-3.5J/3.5JXXX	0 ~ 26.5GHz	≤1.25	Cable standard
DRDH-3.5K/3.5KXXX	0 ~ 26.5GHz	≤1.30	attenuation +2×0.06√f(GHz)
DRDH-SMAJ/SMAJXXX	0 ~ 18GHz	≤1.20	
DRDH-NJ/NJXXX	0 ~ 18GHz	≤1.25	
DRDH-NJ/SMAJXXX	0 ~ 18GHz	≤1.25	

Phase-stable Cable Assemblies



DRWX-2.92J/2.92JXXX Cable Assemblies

DRWX-NK/NKXXXCable Assemblies

Main performance of several typical cable assemblies

Cable assembly model	Frequency range	VSWR	Insertion loss Db Max
DRWX-2.92J/2.92JXXX	0 ~ 40GHz	≤1.25	
DRWX-2.92J/2.92KXXX	0 ~ 40GHz	≤1.30	
DRWX-3.5J/3.5JXXX	0 ~ 26.5GHz	≤1.25	Cable standard
DRWX-3.5K/3.5KXXX	0 ~ 26.5GHz	≤1.30	attenuation +2×0.06√f(GHz)
DRWX-SMAJ/SMAJXXX	0 ~ 18GHz	≤1.20	,,,,
DRWX-NJ/NJXXX	0 ~ 18GHz	≤1.25	
DRWX-NJ/SMAJXXX	0 ~ 18GHz	≤1.25	

Test Cable Assemblies

245

DRCS-2.92J/2.92JXXX Cable Assemblies DRCS-SMAJ/SMAJXXX Cable Assemblies


Main performance of several typical cable assemblies

Cable assembly model	Cable assembly model Frequency range		Insertion loss Db Max
DRCS-2.92J/2.92JXXX	0 ~ 40GHz	≤1.20	
DRCS-2.92J/2.92KXXX	0 ~ 40GHz	≤1.20	
DRCS-3.5J/3.5JXXX	0 ~ 26.5GHz	≤1.20	Cable standard
DRCS-3.5K/3.5KXXX	0 ~ 26.5GHz	≤1.20	attenuation +2×0.06√f(GHz)
DRCS-SMAJ/SMAJXXX	0 ~ 18GHz	≤1.20	,,,,,,,,,,,
DRCS-NJ/NJXXX	0 ~ 18GHz	≤1.20	
DRCS-NJ/SMAJXXX	0 ~ 18GHz	≤1.20	

Radio Frequency (RF) Insulators

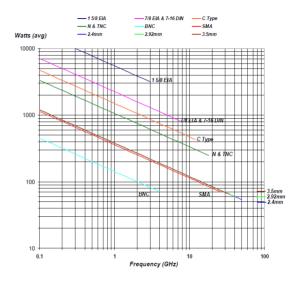
Model	D-1	D-2	L-1	L-2	L-3	Notes
RF2014-0.3(4.4-1.5)	2.0	0.3	1.4	4.4	1.5	
RF2014-0.3(8-4.6)	2.0	0.3	1.4	8.0	4.6	
RF2014-0.3(3.9-0.4)	2.0	0.3	1.6	3.9	1.4	
RF2016-0.3(8-4.6)	2.0	0.3	1.6	8.0	4.6	
RF2516-038(8-4.6)	2.5	0.38	1.6	8.0	4.6	
RF2516-0.38(12-2)	2.5	0.38	1.6	12.0	2.0	
RF2516-0.38(17-6)	2.5	0.38	1.6	17.0	6.0	
RF2520-0.38(9-2)	2.5	0.38	2.0	9.0	2.0	
RF2520-0.38(16-2)	2.4	0.38	2.0	16.0	2.0	
RF2530-0.38(12-2.2)	2.5	0.38	3.0	12.0	2.2	
RF2816-0.45(5.2-1.1)	2.8	0.45	1.6	5.2	1.1	
RF2816-0.45(8-4.6)	2.8	0.45	1.6	8.0	4.6	
RF2816-0.45(12-3)	2.8	0.45	1.6	12.0	3.0	
RF3016-0.5(7.8-2)	3.0	0.5	1.6	7.8	2.0	
RF3016-0.5(12-5)	3.0	0.5	1.6	12.0	5.0	
RF3020-0.5(6-1.5)	3.0	0.5	2.0	6.0	1.5	
RF3020-0.5(6.5-2.2)	3.0	0.5	2.0	6.5	2.2	
RF3020-0.5(8.5-2.2)	3.0	0.5	2.0	8.5	2.2	
RF3020-0.5(12-4)	3.0	0.5	2.0	12.0	4.0	
RF3020-0.5(12-5)	3.0	0.5	2.0	12.0	5.0	
RF3030-0.5(14-4)	3.0	0.5	3.0	14.0	4.0	
RF3030-0.5(33-15)	3.0	0.5	3.0	33.0	15.0	
RF3042-0.5(9-2.2)	3.0	0.5	4.2	9.0	2.2	
RF3047-0.5(9.4-2.2)	3.0	0.5	4.7	9.4	2.2	
RF3047-0.5(12-2.2)	3.0	0.5	4.7	12.0	2.2	
RF4720-0.8(6.5-2)	4.7	0.8	2.0	6.5	2.0	
RF5530-0.9(9-3)	5.5	0.9	3.0	9.0	3.0	
RF9430-1.5(10.5-3)	9.4	1.5	3.0	10.5	3.0	

VSWR, Return Loss and Transmission Loss vs Transmission Power

VSWR	Return Loss (dBm)	Trans. Loss (dB)	Volt. Refl Coeff	Power Trans (%)	Power Refl (%)
1.00	_	0.000	0.00	100.0	0.0
1.01	46.1	0.000	0.00	100.0	0.0
1.02	40.1	0.000	0.01	100.0	0.0
1.03	36.6	0.001	0.01	100.0	0.0
1.04	34.2	0.002	0.02	100.0	0.0
1.05	32.3	0.003	0.02	99.9	0.1
1.06	30.7	0.004	0.03	99.9	0.1
1.07	29.4	0.005	0.03	99.9	0.1
1.08	28.3	0.006	0.04	99.9	0.1
1.09	27.3	0.008	0.04	99.8	0.2
1.10	26.4	0.010	0.05	99.8	0.2
1.11	25.7	0.012	0.05	99.7	0.3
1.12	24.9	0.014	0.06	99.7	0.3
1.13	24.3	0.016	0.06	99.6	0.4
1.14	23.7	0.019	0.07	99.6	0.4
1.15	23.1	0.021	0.07	99.5	0.5
1.16	22.6	0.024	0.07	99.5	0.5
1.17	22.1	0.027	0.08	99.4	0.6
1.18	21.7	0.030	0.08	99.3	0.7
1.19	21.2	0.033	0.09	99.2	0.8
1.20	20.8	0.036	0.09	99.2	0.8
1.21	20.4	0.039	0.10	99.1	0.9
1.22	20.1	0.043	0.10	99.0	1.0
1.23	19.7	0.046	0.10	98.9	1.1
1.24	19.4	0.050	0.10	98.9	1.1
1.25	19.1	0.054	0.11	98.8	1.2
1.26	18.8	0.058	0.12	98.7	1.3
1.27	18.5	0.062	0.12	98.6	1.4
1.28	18.2	0.066	0.12	98.5	1.5
1.29	17.9	0.070	0.12	98.4	1.6
1.30	17.7	0.075	0.13	98.3	1.7
1.32	17.2	0.075	0.13	98.1	1.9
1.34	16.8	0.083	0.15	97.9	2.1
1.36	16.3	0.102	0.15	97.9	2.3
1.38	15.9	0.102	0.16	97.7	2.5
1.40	15.8	0.112	0.17	97.3	2.8
1.42	15.8	0.122	0.17	97.2	3.0
1.42	14.9	0.133	0.17	96.7	3.3
1.46	14.6	0.155	0.19	96.5	3.5
1.48	14.3	0.166	0.19	96.3	3.7
1.50	14.0	0.177	0.20	96.0	4.0
1.52	13.7	0.189	0.21	95.7	4.3
1.54	13.4	0.201	0.21	95.5	4.5
1.56	13.2	0.213	0.22	95.2	4.8
1.58	13.0	0.225	0.22	94.9	5.1
1.60	12.7	0.238	0.23	94.7	5.3
1.62	12.5	0.250	0.24	94.4	5.6

VSWR, Return Loss and Transmission Loss vs Transmission Power

	Return Loss	Trans, Loss	Volt. Refl	B	Power Refl
VSWR	(dBm)	(dB)	Coeff	Power Trans (%)	(%)
1.64	12.3	0.263	0.24	94.1	5.9
1.66	12.1	0.276	0.25	93.8	6.2
1.68	11.9	0.289	0.25	93.6	6.4
1.70	11.7	0.302	0.26	93.3	6.7
1.72	11.5	0.315	0.26	93.0	7.0
1.74	11.4	0.329	0.27	92.7	7.3
1.76	11.2	0.342	0.28	92.4	7.6
1.78	11.0	0.356	0.28	92.1	7.9
1.80	10.9	0.370	0.29	91.8	8.2
1.82	10.7	0.384	0.29	91.5	8.5
1.84	10.6	0.398	0.30	91.3	8.7
1.86	10.4	0.412	0.30	91.0	9.0
1.88	10.3	0.426	0.31	90.7	9.3
1.90	10.2	0.440	0.31	90.4	9.6
1.92	10.0	0.454	0.32	90.1	9.9
1.94	9.9	0.468	0.32	89.8	10.2
1.96	9.8	0.483	0.32	89.5	10.5
1.98	9.7	0.497	0.33	89.2	10.8
2.00	9.5	0.512	0.33	88.9	11.1
2.50	7.4	0.881	0.43	81.6	18.4
3.00	6.0	1.249	0.50	75.0	25.0
3.50	5.1	1.603	0.56	69.1	30.9
4.00	4.4	1.938	0.60	64.0	36.0
4.50	3.9	2.255	0.64	59.5	40.5
5.00	3.5	2.553	0.67	55.6	44.4
5.50	3.2	2.834	0.69	52.1	47.9
6.00	2.9	3.100	0.71	49.0	51.0
6.50	2.7	3.351	0.73	46.2	53.8
7.00	2.5	3.590	0.75	43.7	56.2
7.50	2.3	3.817	0.76	41.5	58.5
8.00	2.2	4.033	0.78	39.5	60.5
8.50	2.1	4.240	0.79	37.7	62.3
9.00	1.9	4.437	0.80	36.0	64.0
9.50	1.8	4.626	0.81	34.5	65.5
10.00	1.7	4.807	0.82	33.1	66.9
11.00	1.6	5.149	0.83	30.6	69.4
12.00	1.5	5.466	0.85	28.4	71.6
13.00	1.3	5.762	0.86	26.5	73.5
14.00	1.2	6.040	0.87	24.9	75.1
15.00	1.2	6.301	0.88	23.4	76.6
16.00	1.1	6.547	0.88	22.1	77.9
17.00	1.0	6.780	0.89	21.0	79.0
18.00	1.0	7.002	0.89	19.9	80.1
19.00	0.9	7.212	0.90	19.0	81.0
20.00	0.9	7.413	0.90	18.1	81.9
25.00	0.7	8.299	0.92	14.8	85.2
30.00	0.6	9.035	0.94	12.5	87.5


RF, Microwave and Millimeter Wave Frequency Bands

Frequency Band Letter Designation	Frequency Range	Wavelength
L band	1 - 2 GHz	15cm - 30cm
S band	2 - 4 GHz	7.5cm - 15cm
C band	4 - 8 GHz	3.75cm - 7.5cm
X band	8 - 12 GHz	25mm - 37.5cm
Ku band	12 - 18 GHz	16.7mm - 25mm
K band	18 - 26.5 GHz	11.3mm - 16.7mm
Ka band	26.5 - 40 GHz	7.5mm - 11.3mm
Q band	33 - 50 GHz	6.0mm - 9.0mm
U band	40 - 60 GHz	5.0mm - 7.5mm
V band	50 - 75 GHz	4.0mm - 6.0mm
W band	75 - 110 GHz	2.7mm - 4.0mm
F band	90 - 110 GHz	2.7mm - 3.3mm
D band	110 - 170 GHz	1.8mm - 2.7mm

Maximum frequency, power and coupling torque

Connector Type	Maximum	Maximum CW Power @ Max,	Coupling Torque	
.,,,,,,	Frequency (GHz)	Frequency (Watts)	(N/cm)	(in/lb)
2.4mm	50	55	90	8
2.92mm/K	40	60	90	8
3.5mm	34	65	90	8
SMA precision	26.5	70	57	5
BNC	4	70	N/A	N/A
TNC	18	250	N/A	N/A
Type N	11	150	135	12
Type N precision	18	250	135	12
Type C	12	440	N/A	N/A
7-16 DIN	7.5	820	226	20
7/8 EIA	7.5	820	N/A	N/A
1 5/8 EIA	3	3200	N/A	N/A

Connector Power Handling vs Frequency

